• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Using Cost Distributions to Guide Weight Decay in Local Search for SAT

    Thumbnail
    View/Open
    54235_1.pdf (193.2Kb)
    Author(s)
    Thornton, John
    Pham, Nghia
    Griffith University Author(s)
    Thornton, John R.
    Pham, Nghia N.
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Although clause weighting local search algorithms have produced some of the best results on a range of challenging satisfiability (SAT) benchmarks, this performance is dependent on the careful hand-tuning of sensitive parameters. When such hand-tuning is not possible, clause weighting algorithms are generally outperformed by self-tuning WalkSAT-based algorithms such as AdaptNovelty+ and AdaptG2WSAT. In this paper we investigate tuning the weight decay parameter of two clause weighting algorithms using the statistical properties of cost distributions that are dynamically accumulated as the search progresses. This method selects ...
    View more >
    Although clause weighting local search algorithms have produced some of the best results on a range of challenging satisfiability (SAT) benchmarks, this performance is dependent on the careful hand-tuning of sensitive parameters. When such hand-tuning is not possible, clause weighting algorithms are generally outperformed by self-tuning WalkSAT-based algorithms such as AdaptNovelty+ and AdaptG2WSAT. In this paper we investigate tuning the weight decay parameter of two clause weighting algorithms using the statistical properties of cost distributions that are dynamically accumulated as the search progresses. This method selects a parameter setting both according to the speed of descent in the cost space and according to the shape of the accumulated cost distribution, where we take the shape to be a predictor of future performance. In a wide ranging empirical study we show that this automated approach to parameter tuning can outperform the default settings for two state-of-the-art algorithms that employ clause weighting (PAWS and gNovelty+). We also show that these self-tuning algorithms are competitive with three of the best-known self-tuning SAT local search techniques: RSAPS, AdaptNovelty+ and AdaptG2WSAT.
    View less >
    Conference Title
    PRICAI 2008: Trends in Artificial Intelligence
    Publisher URI
    http://www.jaist.ac.jp/PRICAI-08/
    DOI
    https://doi.org/10.1007/978-3-540-89197-0_38
    Copyright Statement
    © 2008 Springer. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com
    Subject
    Artificial Intelligence and Image Processing not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/23559
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander