Hydrodynamic performance of solid and porous heave plates
Author(s)
Tao, Longbin
Dray, Daniel
Griffith University Author(s)
Year published
2008
Metadata
Show full item recordAbstract
Heave plates have been widely utilized in floating offshore structures as they can provide additional damping and added mass to improve the hydrodynamic response of the system. This study investigates the hydrodynamic characteristics (added mass and damping) of oscillatory solid or porous disks using model scale experiments. All experiments were conducted via forced oscillation model tests using a planar motion mechanism (PMM). The hydrodynamic coefficients of the solid or porous disk obtained from the force measurements are analysed and presented. The sensitivities of the damping and added mass coefficients to both motion ...
View more >Heave plates have been widely utilized in floating offshore structures as they can provide additional damping and added mass to improve the hydrodynamic response of the system. This study investigates the hydrodynamic characteristics (added mass and damping) of oscillatory solid or porous disks using model scale experiments. All experiments were conducted via forced oscillation model tests using a planar motion mechanism (PMM). The hydrodynamic coefficients of the solid or porous disk obtained from the force measurements are analysed and presented. The sensitivities of the damping and added mass coefficients to both motion amplitude and the disk porosity are examined.
View less >
View more >Heave plates have been widely utilized in floating offshore structures as they can provide additional damping and added mass to improve the hydrodynamic response of the system. This study investigates the hydrodynamic characteristics (added mass and damping) of oscillatory solid or porous disks using model scale experiments. All experiments were conducted via forced oscillation model tests using a planar motion mechanism (PMM). The hydrodynamic coefficients of the solid or porous disk obtained from the force measurements are analysed and presented. The sensitivities of the damping and added mass coefficients to both motion amplitude and the disk porosity are examined.
View less >
Journal Title
Ocean Engineering
Volume
35
Issue
10
Subject
Ship and Platform Hydrodynamics
Oceanography
Civil Engineering
Maritime Engineering