• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Hydrodynamic performance of solid and porous heave plates

    Author(s)
    Tao, Longbin
    Dray, Daniel
    Griffith University Author(s)
    Tao, Longbin
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Heave plates have been widely utilized in floating offshore structures as they can provide additional damping and added mass to improve the hydrodynamic response of the system. This study investigates the hydrodynamic characteristics (added mass and damping) of oscillatory solid or porous disks using model scale experiments. All experiments were conducted via forced oscillation model tests using a planar motion mechanism (PMM). The hydrodynamic coefficients of the solid or porous disk obtained from the force measurements are analysed and presented. The sensitivities of the damping and added mass coefficients to both motion ...
    View more >
    Heave plates have been widely utilized in floating offshore structures as they can provide additional damping and added mass to improve the hydrodynamic response of the system. This study investigates the hydrodynamic characteristics (added mass and damping) of oscillatory solid or porous disks using model scale experiments. All experiments were conducted via forced oscillation model tests using a planar motion mechanism (PMM). The hydrodynamic coefficients of the solid or porous disk obtained from the force measurements are analysed and presented. The sensitivities of the damping and added mass coefficients to both motion amplitude and the disk porosity are examined.
    View less >
    Journal Title
    Ocean Engineering
    Volume
    35
    Issue
    10
    DOI
    https://doi.org/10.1016/j.oceaneng.2008.03.003
    Subject
    Ship and Platform Hydrodynamics
    Oceanography
    Civil Engineering
    Maritime Engineering
    Publication URI
    http://hdl.handle.net/10072/23579
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander