Show simple item record

dc.contributor.authorGhadiri, Hosseinen_US
dc.contributor.authorHussein, Janeten_US
dc.contributor.authorRose, Calvinen_US
dc.contributor.authorYu, Bofuen_US
dc.date.accessioned2017-05-03T11:33:50Z
dc.date.available2017-05-03T11:33:50Z
dc.date.issued2008en_US
dc.date.modified2010-07-07T07:39:46Z
dc.identifier.urihttp://hdl.handle.net/10072/24084
dc.description.abstractVegetative buffer strips are widely used as a conservation measure to reduce erosion and transport of sediments and associated pollutants across landscapes. Buffers generally reduce sediment and pollutant loads through a combination of deposition and infiltration processes. The physical processes involved in sediment deposition by a stiff Vetiver grass buffer strip at low flow rates were examined in a series of experiments carried out in a 1x6m flume of a rainfall simulator. Experiments were carried out using sub-critical flows on three different soils introduced to flow path as slurry upstream of the Vetiver strip at 1, 3 and 5% slopes. Water and sediment profiles were measured at different time intervals while experiments were in progress. The strip caused a region of increased flow depth (backwater), upstream of the buffer which increased in depth and decreased in length with increasing slope. As slope increased, sediment was deposited closer to the grass strip, moving into the grass strip at 5% slope. The buffer strip was less effective in reducing sediment transport as slope increased and differences between slopes were significant. These experiments quantified the reduction in sediment and particulate-sorbed nutrients from overland flow and data were used to test the newly developed model of GUSED-VBS (the Griffith University Soil Erosion & Deposition model-Vegetated Buffer Strip) for assessing and predicting buffer efficiency for sediment and sorbed nutrients. This model couples the hydraulics, sediment deposition and topography in order to predict water and sediment profiles upstream of a buffer strip with time. Unlike other models, GUSED-VBS simulates the evolution of the deposited layer by dynamically adjusting the bed elevation, the water profile and the flow velocity as a result of sediment accumulation. The model successfully predicts water and sediment profiles while masses of deposited sediment and sorbed nutrients (P, N) were generally simulated within 20 % of measured values. Further model development is in progress which will incorporate infiltration to provide a coupled overland/vadose approach to simulating flow through vegetative buffers.en_US
dc.description.publicationstatusYesen_AU
dc.format.extent197458 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglishen_US
dc.language.isoen_AU
dc.publisherNo data provideden_US
dc.publisher.placeBudapest, Hungaryen_US
dc.publisher.urihttp://tucson.ars.ag.gov/isco/isco15/GL.htmen_US
dc.relation.ispartofstudentpublicationNen_AU
dc.relation.ispartofconferencename15th International Soil Conservation Conference,en_US
dc.relation.ispartofconferencetitleSoil and Water Conservation, Climate Change and Environmental Sensitivityen_US
dc.relation.ispartofdatefrom2008-05-19en_US
dc.relation.ispartofdateto2008-05-23en_US
dc.relation.ispartoflocationBudapest, Hungaryen_US
dc.rights.retentionYen_AU
dc.subject.fieldofresearchcode300104en_US
dc.titlePredicting vegetation buffer efficiency in reducing runoff transport of sediments and nutrients.en_US
dc.typeConference outputen_US
dc.type.descriptionE2 - Conference Publications (Non HERDC Eligible)en_US
dc.type.codeE - Conference Publicationsen_US
gro.facultyGriffith Sciences, Griffith School of Environmenten_US
gro.rights.copyrightCopyright remains with the authors 2008. The attached file is posted here with permission of the copyright owners for your personal use only. No further distribution permitted. For information about this conference please refer to the publisher's website or contact the authors.en_AU
gro.date.issued2008
gro.hasfulltextFull Text


Files in this item

This item appears in the following Collection(s)

  • Conference outputs
    Contains papers delivered by Griffith authors at national and international conferences.

Show simple item record