• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Prefabricated vertical drains (PVDs) in soft Bangkok clay: a case study of the new Bangkok International Airport project

    Thumbnail
    View/Open
    55626_1.pdf (1.190Mb)
    Author(s)
    T. Bergado, Dennes
    Balasubramaniam, A.
    Jonathan Fannin, R.
    D. Holtz, Robert
    Griffith University Author(s)
    Balasubramaniam, Bala B.
    Year published
    2002
    Metadata
    Show full item record
    Abstract
    This paper presents the performance of a full-scale test embankment constructed on soft Bangkok clay with prefabricated vertical drains (PVDs) at the site of the new Bangkok International Airport in Thailand. The embankment was square in plan with a maximum height of 4.2 m, 3H:1V side slopes, and base dimensions of 40 m by 40 m. The piezometric level with depth is characterized by negative drawdown starting at around 8-10 m depth caused by excessive withdrawal of groundwater. Instrumentation was provided to monitor both horizontal and vertical movements of the test embankment. The measured increases in undrained shear strengths ...
    View more >
    This paper presents the performance of a full-scale test embankment constructed on soft Bangkok clay with prefabricated vertical drains (PVDs) at the site of the new Bangkok International Airport in Thailand. The embankment was square in plan with a maximum height of 4.2 m, 3H:1V side slopes, and base dimensions of 40 m by 40 m. The piezometric level with depth is characterized by negative drawdown starting at around 8-10 m depth caused by excessive withdrawal of groundwater. Instrumentation was provided to monitor both horizontal and vertical movements of the test embankment. The measured increases in undrained shear strengths with depth are in agreement with the values calculated from the SHANSEP technique. The secondary compression ratio, Calpha, was 0.018, or within the normal values for marine clays. The coefficient of horizontal consolidation measured in the field, Ch(field), was higher for soil at 4 and 10 m depths than for the weakest soil at 6 m depth. The back-calculated Ch(field) values range from 3 to 8 m2/year, and the ratio of Ch(field) to Ch(lab) ranges from 4 to 5, where Ch(lab) is the coefficient of horizontal consolidation measured in the laboratory. The degree of consolidation estimated from the pore-pressure dissipation measurements agreed with those obtained from settlement measurements. The water-content reductions from field measurements were also in good agreement with the values computed from the consolidation settlements. The full-scale study confirmed that the magnitudes of consolidation settlements increased with the corresponding decrease of PVD spacing at a particular time period. Lastly, the results of the full-scale study have proven the effectiveness of PVDs for the improvement of soft Bangkok clay.Key words: soft clay, consolidation, prefabricated vertical drain, preloading, test embankment.
    View less >
    Journal Title
    Canadian Geotechnical Journal
    Volume
    39
    Issue
    2
    DOI
    https://doi.org/10.1139/t01-100
    Copyright Statement
    © 2002 NRC Research Press. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Civil Engineering
    Environmental Engineering
    Publication URI
    http://hdl.handle.net/10072/24413
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander