• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis

    Author(s)
    L. Cook, Anthony
    Sturm, Richard A.
    Griffith University Author(s)
    Cook, Anthony
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Several parallels between stem cell biology and tumour behaviour have been discovered in recent times. Such commonality is apparent in the unlimited capacity for cell division together with the lack of a differentiated phenotype in embryonic and adult stem cells, traits shared with tumour cells. Differentiation is a tightly regulated process that is mediated by the actions of multiple transcription factor families. The POU domain-containing family of transcription factors contains multiple mammalian members divided into six classes, which can be expressed broadly or in a cell-specific manner, and which are regulators of cell ...
    View more >
    Several parallels between stem cell biology and tumour behaviour have been discovered in recent times. Such commonality is apparent in the unlimited capacity for cell division together with the lack of a differentiated phenotype in embryonic and adult stem cells, traits shared with tumour cells. Differentiation is a tightly regulated process that is mediated by the actions of multiple transcription factor families. The POU domain-containing family of transcription factors contains multiple mammalian members divided into six classes, which can be expressed broadly or in a cell-specific manner, and which are regulators of cell fate decisions of many different lineages. Target gene regulation can occur via a POU factor acting alone, or in combination with other POU proteins, ubiquitous co-activators or co-repressors, or other lineage restricted transcription factors. Aberrant levels of POU proteins have been found in several malignancies, including melanoma, connecting the otherwise developmentally restricted gene regulatory functions of POU transcription factors to the critical determinants of malignant transformation. Here, we focus on the role of the BRN2 (POU3F2/N-Oct-3) transcription factor in the melanocytic lineage where it may co-ordinate normal developmental cues that can be re-activated in melanoma. Recent studies have shown BRN2 to be responsive to MAPK pathway activation and to modulate the levels of MITF so as to suppress the differentiated melanocytic phenotype and to enhance tumour metastasis.
    View less >
    Journal Title
    Pigment Cell and Melanoma Research
    Volume
    21
    Issue
    6
    DOI
    https://doi.org/10.1111/j.1755-148X.2008.00510.X
    Subject
    Regenerative Medicine (incl. Stem Cells and Tissue Engineering)
    Biological Sciences
    Medical and Health Sciences
    Publication URI
    http://hdl.handle.net/10072/24917
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander