Actin nanotracks for hybrid nanodevices based on linear protein molecular motors

View/ Open
Author(s)
Watson, GS
Cahill, C
Blach, J
Myhra, S
Alexeeva, Y
Ivanova, EP
Nicolau, DV
Year published
2004
Metadata
Show full item recordAbstract
Hybrid nano-devices based on linear protein molecular motors working on micro/nano-engineered surfaces that operate in a "cargo architecture", i.e. motor functionalized nano-objects running on nano-tracks, offer more opportunities than the inverse "sliding architecture" because it fully uses the information regarding directionality which is encoded in tracks, i.e. actin filaments or microtubules. However, this architecture requires the development of techniques for nanolithography with actin filaments (or microtubules) based on molecular self-assembly on engineered surfaces. The present contribution reports on the progress ...
View more >Hybrid nano-devices based on linear protein molecular motors working on micro/nano-engineered surfaces that operate in a "cargo architecture", i.e. motor functionalized nano-objects running on nano-tracks, offer more opportunities than the inverse "sliding architecture" because it fully uses the information regarding directionality which is encoded in tracks, i.e. actin filaments or microtubules. However, this architecture requires the development of techniques for nanolithography with actin filaments (or microtubules) based on molecular self-assembly on engineered surfaces. The present contribution reports on the progress we have made regarding the building of actin nanostructures that would preserve the inherent information over extended micro-sized areas.
View less >
View more >Hybrid nano-devices based on linear protein molecular motors working on micro/nano-engineered surfaces that operate in a "cargo architecture", i.e. motor functionalized nano-objects running on nano-tracks, offer more opportunities than the inverse "sliding architecture" because it fully uses the information regarding directionality which is encoded in tracks, i.e. actin filaments or microtubules. However, this architecture requires the development of techniques for nanolithography with actin filaments (or microtubules) based on molecular self-assembly on engineered surfaces. The present contribution reports on the progress we have made regarding the building of actin nanostructures that would preserve the inherent information over extended micro-sized areas.
View less >
Conference Title
Materials Research Society Symposium Proceedings
Volume
820
Publisher URI
Copyright Statement
© 2004 Materials Research Society. The attached file is reproduced here in accordance with the copyright policy of the publisher.Use hypertext link to access the conference's webpage.