• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Hydrological connectivity drives patterns of macroinvertebrate biodiversity in floodplain rivers of the Australian wet ⁄dry tropics

    Thumbnail
    View/Open
    53152_1.pdf (157.5Kb)
    Author(s)
    Leigh, Catherine
    Sheldon, Fran
    Griffith University Author(s)
    Sheldon, Fran
    Leigh, Catherine
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    1. Floodplain rivers in Australia's wet /dry tropics are regarded as being among the most ecologically intact and bio-diverse lotic ecosystems in the world, yet there have been relatively few community-based studies of their aquatic fauna. 2. To investigate relationships between hydrological connectivity and biodiversity in the region, macroinvertebrates were collected from sites within two contrasting floodplain rivers, the 'tropical' Gregory River and 'dryland' Flinders River systems, during the dry season and analysed at various spatial scales. A subset of sites was re-sampled in the following dry season to explore ...
    View more >
    1. Floodplain rivers in Australia's wet /dry tropics are regarded as being among the most ecologically intact and bio-diverse lotic ecosystems in the world, yet there have been relatively few community-based studies of their aquatic fauna. 2. To investigate relationships between hydrological connectivity and biodiversity in the region, macroinvertebrates were collected from sites within two contrasting floodplain rivers, the 'tropical' Gregory River and 'dryland' Flinders River systems, during the dry season and analysed at various spatial scales. A subset of sites was re-sampled in the following dry season to explore temporal variation. The fauna consisted of 124 morphotaxa, dominated by gatherers and the Insecta. 3. As predicted, hydrological connectivity (the lotic or lentic status of waterbodies) had a major influence on macroinvertebrate assemblage composition and diversity, both in space and time. Assemblages from waterbodies with similar connection histories were most alike, and beta-diversity between assemblages was greatest between lotic and lentic waterbodies, tending to increase with increasing spatial separation. 4. At smaller spatial scales, a number of within-waterbody, habitat and water quality characteristics were important for explaining variation (61%) in the taxonomic organization of assemblages, and characteristics associated with primary productivity and habitat diversity were important for explaining variation (45%) in the functional organization of assemblages. However, much of the small-scale environmental variation across the study region appeared to be related to broad-scale variation in hydrological connectivity, which had both direct and indirect effects on macroinvertebrate assemblages. 5. Conservation of the biodiversity in Australia's wet /dry tropics may depend on conserving the natural variation in hydrological connectivity and the unregulated flow of floodplain rivers.
    View less >
    Journal Title
    Freshwater Biology
    Volume
    54
    Issue
    3
    DOI
    https://doi.org/10.1111/j.1365-2427.2008.02130.x
    Copyright Statement
    © 2009 Wiley-Blackwell Publishing. This is the author-manuscript version of the paper. Reproduced in accordance with the copyright policy of the publisher. The definitive version is available at www.interscience.wiley.com
    Subject
    Environmental sciences
    Ecosystem function
    Environmental management not elsewhere classified
    Biological sciences
    Freshwater ecology
    Publication URI
    http://hdl.handle.net/10072/25449
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander