• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities

    Author(s)
    Du, Jiang
    Lai, Xiaoyong
    Yang, Nailiang
    Zhai, Jin
    Kisailus, David
    Su, Fabing
    Wang, Dan
    Jiang, Lei
    Griffith University Author(s)
    Wang, Dan
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Hierarchically ordered macro−mesoporous titania films have been produced through a confinement self-assembly method within the regular voids of a colloidal crystal with three-dimensional periodicity. Furthermore, graphene as an excellent electron-accepting and electron-transporting material has been incorporated into the hierarchically ordered macro−mesoporous titania frameworks by in situ reduction of graphene oxide added in the self-assembly system. Incorporation of interconnected macropores in mesoporous films improves the mass transport through the film, reduces the length of the mesopore channel, and increases the ...
    View more >
    Hierarchically ordered macro−mesoporous titania films have been produced through a confinement self-assembly method within the regular voids of a colloidal crystal with three-dimensional periodicity. Furthermore, graphene as an excellent electron-accepting and electron-transporting material has been incorporated into the hierarchically ordered macro−mesoporous titania frameworks by in situ reduction of graphene oxide added in the self-assembly system. Incorporation of interconnected macropores in mesoporous films improves the mass transport through the film, reduces the length of the mesopore channel, and increases the accessible surface area of the thin film, whereas the introduction of graphene effectively suppresses the charge recombination. Therefore, the significant enhancement of photocatalytic activity for degrading the methyl blue has been achieved. The apparent rate constants for macro−mesoporous titania films without and with graphene are up to 0.045 and 0.071 min−1, respectively, almost 11 and 17 times higher than that for pure mesoporous titania films (0.0041 min−1).
    View less >
    Journal Title
    ACS Nano
    Volume
    5
    Issue
    1
    DOI
    https://doi.org/10.1021/nn102767d
    Subject
    Macromolecular and Materials Chemistry not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/255000
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander