• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Optimal reference states for maximum accessible entanglement under the local-particle-number superselection rule

    Thumbnail
    View/Open
    55248_2.pdf (247.8Kb)
    Author(s)
    White, GA
    Vaccaro, JA
    Wiseman, HM
    Griffith University Author(s)
    Vaccaro, Joan A.
    Wiseman, Howard M.
    White, Graham A.
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Global conservation laws imply superselection rules (SSRs) which restrict the operations that are possible on any given state. Imposing the additional constraint of local operations and classical communication forbids the transfer of quantum systems between spatially separated sites. In the case of particle conservation this imposes a SSR for local particle number. That is, the coherences between subspaces of fixed particle number at each site are not accessible and any state is therefore equivalent to its projection onto these subspaces. The accessible entanglement under the SSR is less than (or equal to) that available in ...
    View more >
    Global conservation laws imply superselection rules (SSRs) which restrict the operations that are possible on any given state. Imposing the additional constraint of local operations and classical communication forbids the transfer of quantum systems between spatially separated sites. In the case of particle conservation this imposes a SSR for local particle number. That is, the coherences between subspaces of fixed particle number at each site are not accessible and any state is therefore equivalent to its projection onto these subspaces. The accessible entanglement under the SSR is less than (or equal to) that available in the absence of the SSR. An ancilla can be used as a reference system to increase the amount of accessible entanglement. We examine the relationship between local-particle-number uncertainty and the accessible entanglement and consider the optimal reference states for recovering entanglement from certain systems. In particular we derive the optimal ancilla state for extracting entanglement for a single-shared particle and make steps toward the optimum for general systems. We also show that a reference for phase angle is fundamentally different to a reference for the SSR associated with particle conservation.
    View less >
    Journal Title
    Physical Review A (Atomic, Molecular and Optical Physics)
    Volume
    79
    Publisher URI
    http://pra.aps.org/
    DOI
    https://doi.org/10.1103/PhysRevA.79.032109
    Copyright Statement
    © 2008 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal link for access to the definitive, published version.
    Subject
    Mathematical sciences
    Physical sciences
    Quantum information, computation and communication
    Chemical sciences
    Publication URI
    http://hdl.handle.net/10072/25626
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander