• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Finding Short Patterns to Classify Text Documents

    Thumbnail
    View/Open
    57488_1.pdf (196.2Kb)
    Author(s)
    An, Jiyuan
    Chen, Yi-Ping Phoebe
    Griffith University Author(s)
    An, Jay
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    Many classification methods have been proposed to find patterns in text documents. However, according to Occam's razor principle, "the explanation of any phenomenon should make as few assumptions as possible", short patterns usually have more explainable and meaningful for classifying text documents. In this paper, we propose a depth-first pattern generation algorithm, which can find out short patterns from text document more effectively, comparing with breadth-first algorithmMany classification methods have been proposed to find patterns in text documents. However, according to Occam's razor principle, "the explanation of any phenomenon should make as few assumptions as possible", short patterns usually have more explainable and meaningful for classifying text documents. In this paper, we propose a depth-first pattern generation algorithm, which can find out short patterns from text document more effectively, comparing with breadth-first algorithm
    View less >
    Conference Title
    2006 IEEE / WIC / ACM International Conference on Web Intelligence (WI-2006)
    DOI
    https://doi.org/10.1109/WI.2006.82
    Copyright Statement
    © 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
    Publication URI
    http://hdl.handle.net/10072/25629
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander