The Neural-based Segmentation of Cursive Words using Enhanced Heuristics

View/ Open
Author(s)
Cheng, Chun Ki
Blumenstein, Michael
Year published
2005
Metadata
Show full item recordAbstract
This paper presents an enhanced heuristic segmenter (EHS) and an improved neural-based segmentation technique for segmenting cursive words and validating prospective segmentation points respectively. The EHS employs two new features, ligature detection and a neural assistant, to locate prospective segmentation points. The improved neural-based segmentation technique can then be used to examine the prospective segmentation points by fusion of confidence values obtained from left and centre character recognition outputs in addition to the segmentation point validation (SPV) output. The improved neural-based segmentation technique ...
View more >This paper presents an enhanced heuristic segmenter (EHS) and an improved neural-based segmentation technique for segmenting cursive words and validating prospective segmentation points respectively. The EHS employs two new features, ligature detection and a neural assistant, to locate prospective segmentation points. The improved neural-based segmentation technique can then be used to examine the prospective segmentation points by fusion of confidence values obtained from left and centre character recognition outputs in addition to the segmentation point validation (SPV) output. The improved neural-based segmentation technique uses a recently proposed feature extraction technique (modified direction feature) for representing the segmentation points and characters to enhance the overall segmentation process. The EHS and the neural-based segmentation technique have been implemented and tested on a benchmark database providing encouraging results.
View less >
View more >This paper presents an enhanced heuristic segmenter (EHS) and an improved neural-based segmentation technique for segmenting cursive words and validating prospective segmentation points respectively. The EHS employs two new features, ligature detection and a neural assistant, to locate prospective segmentation points. The improved neural-based segmentation technique can then be used to examine the prospective segmentation points by fusion of confidence values obtained from left and centre character recognition outputs in addition to the segmentation point validation (SPV) output. The improved neural-based segmentation technique uses a recently proposed feature extraction technique (modified direction feature) for representing the segmentation points and characters to enhance the overall segmentation process. The EHS and the neural-based segmentation technique have been implemented and tested on a benchmark database providing encouraging results.
View less >
Conference Title
Proceedings of the Eighth International Conference on Document Analysis and Recognition
Copyright Statement
© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.