Mechanisms of Group B Streptococcal-Induced Apoptosis of Murine Macrophages
Author(s)
Ulett, GC
Maclean, KH
Nekkalapu, S
Cleveland, JL
Adderson, EE
Griffith University Author(s)
Year published
2005
Metadata
Show full item recordAbstract
Apoptosis of murine and human macrophages induced by group B Streptococcus agalactiae (GBS) is likely an important virulence mechanism that is used by the bacteria to suppress the host immune response and to persist at sites of infection. The mechanisms by which GBS induces apoptosis are, however, largely unknown. In this study, we report that in murine macrophages GBS induces unique changes in the regulation and localization of the apoptotic regulators Bad, 14-3-3, and Omi/high-temperature requirement A2 and leads to the release of cytochrome c and the activation of caspase-9 and caspase-3. Furthermore, inhibition of caspase-3 ...
View more >Apoptosis of murine and human macrophages induced by group B Streptococcus agalactiae (GBS) is likely an important virulence mechanism that is used by the bacteria to suppress the host immune response and to persist at sites of infection. The mechanisms by which GBS induces apoptosis are, however, largely unknown. In this study, we report that in murine macrophages GBS induces unique changes in the regulation and localization of the apoptotic regulators Bad, 14-3-3, and Omi/high-temperature requirement A2 and leads to the release of cytochrome c and the activation of caspase-9 and caspase-3. Furthermore, inhibition of caspase-3 impaired GBS-induced apoptosis of macrophages. The ability to modulate the activity of effector caspases may therefore represent an unexploited avenue for therapeutic intervention in GBS infections.
View less >
View more >Apoptosis of murine and human macrophages induced by group B Streptococcus agalactiae (GBS) is likely an important virulence mechanism that is used by the bacteria to suppress the host immune response and to persist at sites of infection. The mechanisms by which GBS induces apoptosis are, however, largely unknown. In this study, we report that in murine macrophages GBS induces unique changes in the regulation and localization of the apoptotic regulators Bad, 14-3-3, and Omi/high-temperature requirement A2 and leads to the release of cytochrome c and the activation of caspase-9 and caspase-3. Furthermore, inhibition of caspase-3 impaired GBS-induced apoptosis of macrophages. The ability to modulate the activity of effector caspases may therefore represent an unexploited avenue for therapeutic intervention in GBS infections.
View less >
Journal Title
Journal of Immunology
Volume
175
Issue
4
Publisher URI
Subject
Immunology
Medical bacteriology