Textural Hausdorff Distance for Wider-Range Tolerance to Pose Variation and Misalignment in 2D Face Recognition

View/ Open
Author(s)
Zhao, Sanqiang
Gao, Yongsheng
Griffith University Author(s)
Year published
2009
Metadata
Show full item recordAbstract
This paper addresses two critical but rarely concerned issues in 2D face recognition: wider-range tolerance to pose variation and misalignment. We propose a new Textural Hausdorff Distance (THD), which is a compound measurement integrating both spatial and textural features. The THD is applied to a Significant Jet Point (SJP) representation of face images, where a varied number of shape-driven SJPs are detected automatically from low-level edge map with rich information content. The comparative experiments conducted on publicly available FERET and AR face databases demonstrated that the proposed approach has a considerably ...
View more >This paper addresses two critical but rarely concerned issues in 2D face recognition: wider-range tolerance to pose variation and misalignment. We propose a new Textural Hausdorff Distance (THD), which is a compound measurement integrating both spatial and textural features. The THD is applied to a Significant Jet Point (SJP) representation of face images, where a varied number of shape-driven SJPs are detected automatically from low-level edge map with rich information content. The comparative experiments conducted on publicly available FERET and AR face databases demonstrated that the proposed approach has a considerably wider range of tolerance against both in-depth head rotation and face misalignment.
View less >
View more >This paper addresses two critical but rarely concerned issues in 2D face recognition: wider-range tolerance to pose variation and misalignment. We propose a new Textural Hausdorff Distance (THD), which is a compound measurement integrating both spatial and textural features. The THD is applied to a Significant Jet Point (SJP) representation of face images, where a varied number of shape-driven SJPs are detected automatically from low-level edge map with rich information content. The comparative experiments conducted on publicly available FERET and AR face databases demonstrated that the proposed approach has a considerably wider range of tolerance against both in-depth head rotation and face misalignment.
View less >
Conference Title
CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4