• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Design Methods for 3D RFID Antennas Located on a Conducting Ground Plane

    Thumbnail
    View/Open
    56185_1.pdf (1.654Mb)
    Author(s)
    Galchdar, Amir
    Thiel, David V
    O'Keefe, Steven G
    Griffith University Author(s)
    Thiel, David V.
    O'Keefe, Steven G.
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Based on 2D meander line methods, 3 times 3 times 3 point, symmetrical, 3D dipole antennas structure was investigated exhaustively to identify those configurations with the highest efficiency and lowest resonant frequency for a fixed length. Maximum efficiency and input impedance occurs when adjacent high current segments in the antenna are oppositely directed. The optimal antenna structure was compressed and the effect of a nearby conducting plane was investigated. The meander line structure greatly improves antenna performance with a resonant frequency of 498 MHz and an efficiency of 62% when located on a conducting ground plane.Based on 2D meander line methods, 3 times 3 times 3 point, symmetrical, 3D dipole antennas structure was investigated exhaustively to identify those configurations with the highest efficiency and lowest resonant frequency for a fixed length. Maximum efficiency and input impedance occurs when adjacent high current segments in the antenna are oppositely directed. The optimal antenna structure was compressed and the effect of a nearby conducting plane was investigated. The meander line structure greatly improves antenna performance with a resonant frequency of 498 MHz and an efficiency of 62% when located on a conducting ground plane.
    View less >
    Journal Title
    IEEE Transactions on Antennas and Propagation
    Volume
    57
    Issue
    2
    Publisher URI
    http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8
    DOI
    https://doi.org/10.1109/TAP.2008.2011227
    Copyright Statement
    © 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
    Subject
    Communications engineering
    Electrical engineering
    Electronics, sensors and digital hardware
    Publication URI
    http://hdl.handle.net/10072/25941
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander