Speech-Signal-Based Frequency Warping

View/ Open
Author(s)
Paliwal, Kuldip
Shannon, Benjamin
Lyons, James
Wojcicki, Kamil
Griffith University Author(s)
Year published
2009
Metadata
Show full item recordAbstract
The speech signal is used for transmission of linguistic information. High energy portions of the speech spectrum have higher signal-to-noise ratios than the low energy portions. As a result, these regions are more robust to noise. Since the speech signal is known to be very robust to noise, it is expected that the high energy regions of the speech spectrum carry the majority of the linguistic information. This letter tries to derive a frequency warping function directly from the speech signal by sampling the frequency axis nonuniformly with the high energy regions sampled more densely than the low energy regions. ...
View more >The speech signal is used for transmission of linguistic information. High energy portions of the speech spectrum have higher signal-to-noise ratios than the low energy portions. As a result, these regions are more robust to noise. Since the speech signal is known to be very robust to noise, it is expected that the high energy regions of the speech spectrum carry the majority of the linguistic information. This letter tries to derive a frequency warping function directly from the speech signal by sampling the frequency axis nonuniformly with the high energy regions sampled more densely than the low energy regions. To achieve this, an ensemble average short-time power spectrum is computed from a large speech corpus. The speech-signal-based frequency warping is obtained by considering equal area portions of the log spectrum. The proposed frequency warping is shown to be similar to the frequency scales obtained through psycho-acoustic experiments, namely the mel and bark scales. The warping is then used in filterbank design for automatic speech recognition experiments. The results of these experiments show that cepstral features based on the proposed warping achieve performance under clean conditions comparable to that of mel-frequency cepstral coefficients, while outperforming them under noisy conditions.
View less >
View more >The speech signal is used for transmission of linguistic information. High energy portions of the speech spectrum have higher signal-to-noise ratios than the low energy portions. As a result, these regions are more robust to noise. Since the speech signal is known to be very robust to noise, it is expected that the high energy regions of the speech spectrum carry the majority of the linguistic information. This letter tries to derive a frequency warping function directly from the speech signal by sampling the frequency axis nonuniformly with the high energy regions sampled more densely than the low energy regions. To achieve this, an ensemble average short-time power spectrum is computed from a large speech corpus. The speech-signal-based frequency warping is obtained by considering equal area portions of the log spectrum. The proposed frequency warping is shown to be similar to the frequency scales obtained through psycho-acoustic experiments, namely the mel and bark scales. The warping is then used in filterbank design for automatic speech recognition experiments. The results of these experiments show that cepstral features based on the proposed warping achieve performance under clean conditions comparable to that of mel-frequency cepstral coefficients, while outperforming them under noisy conditions.
View less >
Journal Title
IEEE Signal Processing Letters
Volume
16
Issue
4
Copyright Statement
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Subject
Communications engineering