• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Modelling and Solving Temporal Reasoning as Propositional Satisfiability

    Thumbnail
    View/Open
    54277_1.pdf (486.2Kb)
    Author
    Pham, Nghia
    Thornton, John
    Sattar, Abdul
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Representing and reasoning about time dependent information is a key research issue in many areas of computer science and artificial intelligence. One of the best known and widely used formalisms for representing interval-based qualitative temporal information is Allen's interval algebra (IA). The fundamental reasoning task in IA is to find a scenario that is consistent with the given information. This problem is in general NP-complete. In this paper, we investigate how an interval-based representation, or IA network, can be encoded into a propositional formula of Boolean variables and/or predicates in decidable theories. ...
    View more >
    Representing and reasoning about time dependent information is a key research issue in many areas of computer science and artificial intelligence. One of the best known and widely used formalisms for representing interval-based qualitative temporal information is Allen's interval algebra (IA). The fundamental reasoning task in IA is to find a scenario that is consistent with the given information. This problem is in general NP-complete. In this paper, we investigate how an interval-based representation, or IA network, can be encoded into a propositional formula of Boolean variables and/or predicates in decidable theories. Our task is to discover whether satisfying such a formula can be more efficient than finding a consistent scenario for the original problem. There are two basic approaches to modelling an IA network: one represents the relations between intervals as variables and the other represents the end-points of each interval as variables. By combining these two approaches with three different Boolean satisfiability(SAT) encoding schemes, we produced six encoding schemes for converting IA to SAT. In addition, we also showed how IA networks can be formulated into satisfiability modulo theories (SMT) formulae based on the quantifier-free integer difference logic (QF-IDL). These encodings were empirically studied using randomly generated IA problems of sizes ranging from 20 to 100 nodes. A general conclusion we draw from these experimental results is that encoding IA into SAT produces better results than existing approaches. More specifically, we show that the new point-based 1-D support SAT encoding of IA produces consistently better results than the other alternatives considered. In comparison with the six different SAT encodings, the SMT encoding came fourth after the point-based and interval-based 1-D support schemes and the point-based direct scheme. Further, we observe that the phase transition region maps directly from the IA encoding to each SAT or SMT encoding, but, surprisingly, the location of the hard region varies according to the encoding scheme. Our results also show a fixed performance ranking order over the various encoding schemes.
    View less >
    Journal Title
    Artificial Intelligence
    Volume
    172
    Issue
    15
    DOI
    https://doi.org/10.1016/j.artint.2008.06.003
    Copyright Statement
    © 2008 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Artificial Intelligence and Image Processing not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/26367
    Collection
    • Journal articles

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia