Effects of 3,4-methylenedioxymethamphetamine on locomotor activity and extracellular dopamine in the nucleus accumbens of Fischer 344 and Lewis rats
Author(s)
Fernandez, Francesca
Porras, Gregory
Mormede, Pierre
Spampinato, Umberto
Chaouloff, Francis
Griffith University Author(s)
Year published
2003
Metadata
Show full item recordAbstract
Previous studies have shown that Fischer 344 (F344) and Lewis (LEW) rats may differ with respect to their behavioural and neurochemical responses to several drugs of abuse, including amphetamines. Herein, we have examined whether such strain differences extend to a ring-substituted amphetamine, namely 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), a recreationally-used drug endowed with euphoric, but also long-term neurotoxic effects. Beside strain differences in baseline locomotor activity (F344>LEW), it was found that the subcutaneous administration of 10 mg/kg, but not 5 mg/kg, MDMA increased locomotor activity in ...
View more >Previous studies have shown that Fischer 344 (F344) and Lewis (LEW) rats may differ with respect to their behavioural and neurochemical responses to several drugs of abuse, including amphetamines. Herein, we have examined whether such strain differences extend to a ring-substituted amphetamine, namely 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), a recreationally-used drug endowed with euphoric, but also long-term neurotoxic effects. Beside strain differences in baseline locomotor activity (F344>LEW), it was found that the subcutaneous administration of 10 mg/kg, but not 5 mg/kg, MDMA increased locomotor activity in F344 rats only. On the other hand, such a treatment increased to similar extents extracellular dopamine (DA) levels in the nucleus accumbens of F344 and LEW rats, thus suggesting that genetic differences in MDMA locomotor effects are not accounted for by accumbal DA release.
View less >
View more >Previous studies have shown that Fischer 344 (F344) and Lewis (LEW) rats may differ with respect to their behavioural and neurochemical responses to several drugs of abuse, including amphetamines. Herein, we have examined whether such strain differences extend to a ring-substituted amphetamine, namely 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), a recreationally-used drug endowed with euphoric, but also long-term neurotoxic effects. Beside strain differences in baseline locomotor activity (F344>LEW), it was found that the subcutaneous administration of 10 mg/kg, but not 5 mg/kg, MDMA increased locomotor activity in F344 rats only. On the other hand, such a treatment increased to similar extents extracellular dopamine (DA) levels in the nucleus accumbens of F344 and LEW rats, thus suggesting that genetic differences in MDMA locomotor effects are not accounted for by accumbal DA release.
View less >
Journal Title
Neuroscience Letters
Volume
335
Issue
3
Subject
Neurosciences
Psychology
Cognitive Sciences