• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Biological adaptive control model: a mechanical analogue of multi-factorial bone density adaptation

    Author(s)
    Davidson, PL
    Milburn, PD
    Wilson, BD
    Griffith University Author(s)
    Milburn, Peter D.
    Year published
    2004
    Metadata
    Show full item record
    Abstract
    The mechanism of how bone adapts to every day demands needs to be better understood to gain insight into situations in which the musculoskeletal system is perturbed. This paper offers a novel multi-factorial mathematical model of bone density adaptation which combines previous single-factor models in a single adaptation system as a means of gaining this insight. Unique aspects of the model include provision for interaction between factors and an estimation of the relative contribution of each factor. This interacting system is considered analogous to a Newtonian mechanical system and the governing response equation is derived ...
    View more >
    The mechanism of how bone adapts to every day demands needs to be better understood to gain insight into situations in which the musculoskeletal system is perturbed. This paper offers a novel multi-factorial mathematical model of bone density adaptation which combines previous single-factor models in a single adaptation system as a means of gaining this insight. Unique aspects of the model include provision for interaction between factors and an estimation of the relative contribution of each factor. This interacting system is considered analogous to a Newtonian mechanical system and the governing response equation is derived as a linear version of the adaptation process. The transient solution to sudden environmental change is found to be exponential or oscillatory depending on the balance between cellular activation and deactivation frequencies.
    View less >
    Journal Title
    Journal of Theoretical Biology
    Volume
    227
    Issue
    2
    DOI
    https://doi.org/10.1016/j.jtbi.2003.10.012
    Subject
    Mathematical sciences
    Biological sciences
    Information and computing sciences
    Publication URI
    http://hdl.handle.net/10072/26556
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander