• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Circularly polarized light stimulation of spin transport in zinc-blende semiconductors

    Author(s)
    Miah, M Idrish
    Kityk, IV
    Gray, E MacA
    Griffith University Author(s)
    Gray, Evan M.
    Miah, Mohammad I.
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    An experimental and theoretical study on the optically stimulated spin transport in zinc-blende semiconductors is presented. The first part of the paper describes an experiment which investigates the effect of a longitudinal electric field on the spin-polarized carriers induced by a circularly polarized light. Since the photo-generated hole spins relaxation is extremely fast, the experiment observes only the effect resulting from spin-polarized electrons accumulating at the transverse edges of the sample, as a result of left-right asymmetries in scattering for spin-up and spin-down electrons in the presence of spin-orbit ...
    View more >
    An experimental and theoretical study on the optically stimulated spin transport in zinc-blende semiconductors is presented. The first part of the paper describes an experiment which investigates the effect of a longitudinal electric field on the spin-polarized carriers induced by a circularly polarized light. Since the photo-generated hole spins relaxation is extremely fast, the experiment observes only the effect resulting from spin-polarized electrons accumulating at the transverse edges of the sample, as a result of left-right asymmetries in scattering for spin-up and spin-down electrons in the presence of spin-orbit (SO) interaction. It is found that the effect depends on the longitudinal electric field and doping density as well as on temperature. The results are discussed. The second part of the paper deals with a theoretical investigation using norm-conserving pseudopotential and Green function formalism to analyse the SO mechanism responsible for the light-induced Hall voltage. The findings resulting from the investigation are discussed and are compared with experimental data.
    View less >
    Journal Title
    Optics Communications
    Volume
    281
    Publisher URI
    http://www.elsevier.com/locate/optcom
    DOI
    https://doi.org/10.1016/j.optcom.2008.07.066
    Subject
    Optical Physics
    Electrical and Electronic Engineering
    Communications Technologies
    Publication URI
    http://hdl.handle.net/10072/26787
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander