• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Stronger Activity of Human Immunodeficiency Virus Type 1 Protease Inhibitors against Clinical Isolates of Plasmodium vivax than against Those of P. falciparum

    Author(s)
    Lek-Uthai, U
    Suwanarusk, R
    Ruengweerayut, R
    Skinner-Adams, TS
    Nosten, F
    Gardiner, DL
    Boonma, P
    Piera, KA
    Andrews, KT
    MacHunter, B
    McCarthy, JS
    Anstey, NM
    Price, RN
    Russell, B
    Griffith University Author(s)
    Andrews, Katherine T.
    Skinner-Adams, Tina
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Recent studies using laboratory clones have demonstrated that several antiretroviral protease inhibitors (PIs) inhibit the growth of Plasmodium falciparum at concentrations that may be of clinical significance, especially during human immunodeficiency virus type 1 (HIV-1) and malaria coinfection. Using clinical isolates, we now demonstrate the in vitro effectiveness of two HIV-1 aspartic PIs, saquinavir (SQV) and ritonavir (RTV), against P. vivax (n = 30) and P. falciparum (n = 20) from populations subjected to high levels of mefloquine and artesunate pressure on the Thailand-Myanmar border. The median 50% inhibitory ...
    View more >
    Recent studies using laboratory clones have demonstrated that several antiretroviral protease inhibitors (PIs) inhibit the growth of Plasmodium falciparum at concentrations that may be of clinical significance, especially during human immunodeficiency virus type 1 (HIV-1) and malaria coinfection. Using clinical isolates, we now demonstrate the in vitro effectiveness of two HIV-1 aspartic PIs, saquinavir (SQV) and ritonavir (RTV), against P. vivax (n = 30) and P. falciparum (n = 20) from populations subjected to high levels of mefloquine and artesunate pressure on the Thailand-Myanmar border. The median 50% inhibitory concentration values of P. vivax to RTV and SQV were 2,233 nM (range, 732 to 7,738 nM) and 4,230 nM (range, 1,326 to 8,452 nM), respectively, both within the therapeutic concentration range commonly found for patients treated with these PIs. RTV was fourfold more effective at inhibiting P. vivax than it was at inhibiting P. falciparum, compared to a twofold difference in SQV sensitivity. An increased P. falciparum mdr1 copy number was present in 33% (3/9) of isolates and that of P. vivax mdr1 was present in 9% of isolates (2/22), but neither was associated with PI sensitivity. The inter-Plasmodium sp. variations in PI sensitivity indicate key differences between P. vivax and P. falciparum. PI-containing antiretroviral regimens may demonstrate prophylactic activity against both vivax and falciparum malaria in HIV-infected patients who reside in areas where multidrug-resistant P. vivax or P. falciparum is found.
    View less >
    Journal Title
    Antimicrobial agents and Chemotherapy
    Volume
    52
    Issue
    7
    Publisher URI
    http://aac.asm.org/
    DOI
    https://doi.org/10.1128/AAC.00169-08
    Subject
    Microbiology
    Medical microbiology
    Pharmacology and pharmaceutical sciences
    Publication URI
    http://hdl.handle.net/10072/26996
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander