• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Development of Multiple Hollow Tube System for Super-Tall Slender Buildings: Part I - Dynamical Design Methodology

    Author(s)
    Gustafson, AK
    Guan, H
    Langer, JW
    Griffith University Author(s)
    Guan, Hong
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    Super-Tall building structures possess complex inelastic and dynamic properties which, under the influence of time dependent loads, experience deformations that are a function of both vibration and mass to stiffness ratio. In addition, super tall structures prescribe to ever increasing slender geometry, amplifying the critical dynamic response of their systems to time variant transient loads. Hence the limitations of static methods of analysis, coupled with insufficient structural systems, implies the need for the development of new 'Dynamical' structural systems for super-tall buildings. This paper describes the analysis ...
    View more >
    Super-Tall building structures possess complex inelastic and dynamic properties which, under the influence of time dependent loads, experience deformations that are a function of both vibration and mass to stiffness ratio. In addition, super tall structures prescribe to ever increasing slender geometry, amplifying the critical dynamic response of their systems to time variant transient loads. Hence the limitations of static methods of analysis, coupled with insufficient structural systems, implies the need for the development of new 'Dynamical' structural systems for super-tall buildings. This paper describes the analysis methods and structural modeling techniques employed to enable the development of the new Multiple Hollow-Tube (MHT) system for super-tall slender buildings. Special emphasis is placed on the application of pushover and time history analysis for effectively identifying the maximum dynamic base shear and bending forces from seismic response forming the basis for a new dynamical design approach.
    View less >
    Conference Title
    4th Australasian Congress on Applied Mechanics, ACAM 2005
    Publication URI
    http://hdl.handle.net/10072/2709
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander