• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Modelling water and chemical transport in large undisturbed soil cores using HYDRUS-2D

    Author(s)
    Phillips, Ian
    Griffith University Author(s)
    Philips, Ian R.
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    The ability of HYDRUS-2D (HYDRUS) to simulate water and chemical transport in large, undisturbed cores of a Vertosol and a Podosol soil was investigated. Parameters required by HYDRUS for simulating water and chemical transport, and nitrogen transformation, were obtained from previously published laboratory studies. HYDRUS simulated the measured cumulative drainage and cumulative chloride (Cl-) leaching behaviour very closely for both soil types, and also provided a very good description of coupled nitrogen transformation (conversion of ammonium to nitrate) and leaching (coefficient of model efficiency ~1). There was little ...
    View more >
    The ability of HYDRUS-2D (HYDRUS) to simulate water and chemical transport in large, undisturbed cores of a Vertosol and a Podosol soil was investigated. Parameters required by HYDRUS for simulating water and chemical transport, and nitrogen transformation, were obtained from previously published laboratory studies. HYDRUS simulated the measured cumulative drainage and cumulative chloride (Cl-) leaching behaviour very closely for both soil types, and also provided a very good description of coupled nitrogen transformation (conversion of ammonium to nitrate) and leaching (coefficient of model efficiency ~1). There was little correlation between measured and predicted potassium (K+) leaching from the Podosol, suggesting that the mathematical equations governing the transport of reactive chemicals did not adequately reflect K+ behaviour in this coarse-textured soil. The reason for this discrepancy is unclear but may have been related to the use of sorption parameters obtained from batch rather than miscible displacement techniques, or mechanisms controlling K+ sorption were not well represented by the general non-linear sorption equation used by HYDRUS. The ability of HYDRUS to accurately simulate water and non-reactive chemical transport agrees with previous studies; however, more investigation into its suitability for predicting the movement reactive chemicals in soil is warranted.
    View less >
    Journal Title
    Australian Journal of Soil Research
    Volume
    44
    Issue
    1
    DOI
    https://doi.org/10.1071/SR05109
    Subject
    Environmental Impact Assessment
    Publication URI
    http://hdl.handle.net/10072/27178
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander