• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of series elasticity and activation conditions on muscle power output and efficiency

    Author(s)
    Lichtwark, G.
    Wilson, A.
    Griffith University Author(s)
    Lichtwark, Glen A.
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    The activation of a muscle depends on the function that it is performing and on the architectural properties of that muscle; the two are inextricably linked. Activation conditions such as activation timing, duration and amplitude can be varied throughout a cyclical movement (such as locomotion) and the length change of the whole muscle tendon unit (MTU) can also be varied. Architecturally, muscles have a range of fibre lengths, maximum force-producing capabilities and stiffness of the series elastic element (SEE). In the present work we use a model to explore the relationship between power output and efficiency of a muscle ...
    View more >
    The activation of a muscle depends on the function that it is performing and on the architectural properties of that muscle; the two are inextricably linked. Activation conditions such as activation timing, duration and amplitude can be varied throughout a cyclical movement (such as locomotion) and the length change of the whole muscle tendon unit (MTU) can also be varied. Architecturally, muscles have a range of fibre lengths, maximum force-producing capabilities and stiffness of the series elastic element (SEE). In the present work we use a model to explore the relationship between power output and efficiency of a muscle across a range of contraction conditions. We have also examined the mechanical and energetic effects of changing muscle architecture within the model. Our results indicate that whilst there are clear optimal conditions for achieving maximum power output and maximum efficiency, the design of the muscle allows high levels of both to be achieved over a range of activation conditions. This range changes with both SEE compliance and the amplitude of the cyclical length change. The results suggest that a compliant SEE allows a muscle to function closer to the maximum of both power output and efficiency. In addition, by varying the amplitude of the activation level, the efficiency can theoretically remain unchanged, whilst the power output can be modulated
    View less >
    Journal Title
    The Journal of Experimental Biology
    Volume
    208
    Issue
    15
    Publisher URI
    http://jeb.biologists.org/
    DOI
    https://doi.org/10.1242/jeb.01710
    Subject
    Biological Sciences
    Medical and Health Sciences
    Publication URI
    http://hdl.handle.net/10072/27668
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander