• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Laser linewidth effects in quantum state discrimination by electromagnetically induced transparency

    Author(s)
    McDonnell, M.
    Stacey, D.
    Steane, A.
    Griffith University Author(s)
    McDonnell, Matthew
    Year published
    2004
    Metadata
    Show full item record
    Abstract
    We discuss the use of electromagnetically modified absorption to achieve selective excitation in atoms: that is, the laser excitation of one transition while avoiding simultaneously exciting another transition whose frequency is the same as or close to that of the first. The selectivity which can be achieved in the presence of coherent population trapping (CPT) is limited by the decoherence rate of the dark state. We present exact analytical expressions for this effect, and also physical models and approximate expressions which give useful insights into the phenomena. When the laser frequencies are near-resonant with the ...
    View more >
    We discuss the use of electromagnetically modified absorption to achieve selective excitation in atoms: that is, the laser excitation of one transition while avoiding simultaneously exciting another transition whose frequency is the same as or close to that of the first. The selectivity which can be achieved in the presence of coherent population trapping (CPT) is limited by the decoherence rate of the dark state. We present exact analytical expressions for this effect, and also physical models and approximate expressions which give useful insights into the phenomena. When the laser frequencies are near-resonant with the single-photon atomic transitions, CPT is essential for achieving discrimination. When the laser frequencies are far detuned, the "bright" two-photon Raman resonance is important for achieving selective excitation, while the "dark" resonance (CPT) need not be. The application to laser cooling of a trapped atom is also discussed.
    View less >
    Journal Title
    Physical Review A (Atomic, Molecular and Optical Physics)
    Volume
    70
    Publisher URI
    https://journals.aps.org/pra/abstract/10.1103/PhysRevA.70.053802
    DOI
    https://doi.org/10.1103/PhysRevA.70.053802
    Subject
    Mathematical Sciences
    Physical Sciences
    Chemical Sciences
    Publication URI
    http://hdl.handle.net/10072/27815
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander