• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Regioselectively modified sulfated cellulose as prospective drug for treatment of malaria tropica

    Author(s)
    Schwartz-Albiez, Reinhard
    Adams, Yvonne
    von der Lieth, Claus-W
    Mischnick, Petra
    Andrews, Katherine T
    Kirschfink, Michael
    Griffith University Author(s)
    Andrews, Katherine T.
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    Adhesion of Plasmodium falciparum infected erythrocytes (IE) to placental chondroitin-4-sulfate (CSA) has been linked to the severe disease outcome of pregnancy-associated malaria. Consequently, sulfated polysaccharides with inhibitory capacity may be considered for therapeutic strategies as anti-adhesive drugs. During in vitro screening a regioselectively modified cellulose sulfate (CS10) was selected as prime candidate for further investigations because it was able to inhibit adhesion to CSA expressed on CHO cells and placental tissue, to de-adhere already bound infected erythrocytes, and to bind to infected erythrocytes. ...
    View more >
    Adhesion of Plasmodium falciparum infected erythrocytes (IE) to placental chondroitin-4-sulfate (CSA) has been linked to the severe disease outcome of pregnancy-associated malaria. Consequently, sulfated polysaccharides with inhibitory capacity may be considered for therapeutic strategies as anti-adhesive drugs. During in vitro screening a regioselectively modified cellulose sulfate (CS10) was selected as prime candidate for further investigations because it was able to inhibit adhesion to CSA expressed on CHO cells and placental tissue, to de-adhere already bound infected erythrocytes, and to bind to infected erythrocytes. Similar to the undersulfated placental CSA preferred by placental-binding infected erythrocytes, CS10 is characterized by a clustered sulfate pattern along the polymer chain. In further evaluation of its effects on P. falciparum interactions with host erythrocytes, we now show that CS10 inhibits the in vitro asexual growth of parasites in erythrocytes. Furthermore, we show that CS10 interferes with C1 of the classical complement pathway but not with MBL of the lectin pathway. In order to gain insights into the possible interactions of CS10 with known parasite receptors at the molecular level, we designed 3D-structures of characteristic stretches of CS10. CS10 fragments with clustered sulfate groups showed complex patterns of hydrophobic and hydrophilic patches most likely suitable for interactions with protein binding partners. The significance of CS10 interactions with the complement system as well as its anti-malarial effect for prospective drug application are discussed.
    View less >
    Journal Title
    Glycoconjugate Journal
    Volume
    24
    Issue
    1
    Publisher URI
    http://www.springer.com/life+sci/biochemistry+and+biophysics/journal/10719
    DOI
    https://doi.org/10.1007/s10719-006-9012-1
    Subject
    Biochemistry and cell biology
    Medical microbiology
    Neurosciences
    Publication URI
    http://hdl.handle.net/10072/27819
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander