S-glycosyl primary sulfonamides-A new structural class for selective inhibition of cancer-associated carbonic anhydrases
Author(s)
Lopez, Marie
Paul, Blessy
Hofmann, Andreas
Morizzi, Julia
Wu, Quoc K
Charman, Susan A
Innocenti, Alessio
Vullo, Daniela
Supuran, Claudiu T
Poulsen, Sally-Ann
Griffith University Author(s)
Year published
2009
Metadata
Show full item recordAbstract
In this paper, we present a new class of carbonic anhydrase (CA) inhibitor that was designed to selectively target the extracellular domains of the cancer-relevant CA isozymes. The aromatic moiety of the classical zinc binding sulfonamide CA inhibitors is absent from these compounds and instead they incorporate a hydrophilic mono- or disaccharide fragment directly attached to the sulfonamide group to give S-glycosyl primary sulfonamides (1-10). The inhibition properties of these compounds at the physiologically abundant human CA isozymes I and II and cancer-associated IX and XII were determined, and all compounds had moderate ...
View more >In this paper, we present a new class of carbonic anhydrase (CA) inhibitor that was designed to selectively target the extracellular domains of the cancer-relevant CA isozymes. The aromatic moiety of the classical zinc binding sulfonamide CA inhibitors is absent from these compounds and instead they incorporate a hydrophilic mono- or disaccharide fragment directly attached to the sulfonamide group to give S-glycosyl primary sulfonamides (1-10). The inhibition properties of these compounds at the physiologically abundant human CA isozymes I and II and cancer-associated IX and XII were determined, and all compounds had moderate potency with Kis in the micromolar range. We present the crystal structures of anomeric sulfonamides 4, 7, and 10 and the sugar sulfamate drug topiramate in complex with human recombinant CA II. From these structures, we have obtained valuable insights into ligand-protein interactions of these novel carbohydrate-based sulfonamides with CA.
View less >
View more >In this paper, we present a new class of carbonic anhydrase (CA) inhibitor that was designed to selectively target the extracellular domains of the cancer-relevant CA isozymes. The aromatic moiety of the classical zinc binding sulfonamide CA inhibitors is absent from these compounds and instead they incorporate a hydrophilic mono- or disaccharide fragment directly attached to the sulfonamide group to give S-glycosyl primary sulfonamides (1-10). The inhibition properties of these compounds at the physiologically abundant human CA isozymes I and II and cancer-associated IX and XII were determined, and all compounds had moderate potency with Kis in the micromolar range. We present the crystal structures of anomeric sulfonamides 4, 7, and 10 and the sugar sulfamate drug topiramate in complex with human recombinant CA II. From these structures, we have obtained valuable insights into ligand-protein interactions of these novel carbohydrate-based sulfonamides with CA.
View less >
Journal Title
Journal of Medicinal Chemistry
Volume
52
Issue
20
Publisher URI
Copyright Statement
© 2009 American Chemical Society. Self-archiving of the author-manuscript version is not yet supported by this publisher. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.
Subject
Medicinal and biomolecular chemistry
Organic chemistry
Pharmacology and pharmaceutical sciences