• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Book chapters
    • View Item
    • Home
    • Griffith Research Online
    • Book chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Content-Based Image Retrieval

    Author
    Liew, Alan Wee-Chung
    Law, Ngai-Fong
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    With the rapid growth of Internet and multimedia systems, the use of visual information has increased enormously, such that indexing and retrieval techniques have become important. Historically, images are usually manually annotated with metadata such as captions or keywords (Chang & Hsu, 1992). Image retrieval is then performed by searching images with similar keywords. However, the keywords used may differ from one person to another. Also, many keywords can be used for describing the same image. Consequently, retrieval results are often inconsistent and unreliable. Due to these limitations, there is a growing interest in content-based image retrieval (CBIR). These techniques extract meaningful information or features from an image so that images can be classified and retrieved automatically based on their contents. Existing image retrieval systems such as QBIC and Virage extract the so-called low-level features such as color, texture and shape from an image in the spatial domain for indexing. Low-level features sometimes fail to represent high level semantic image features as they are subjective and depend greatly upon user preferences. To bridge the gap, a top-down retrieval approach involving high level knowledge can complement these low-level features. This articles deals with various aspects of CBIR. This includes bottom-up feature- based image retrieval in both the spatial and compressed domains, as well as top-down task-based image retrieval using prior knowledge.
    Book Title
    Encyclopedia of Information Science and Technology
    Volume
    2
    Publisher URI
    http://dx.doi.org/10.4018/978-1-60566-026-4
    DOI
    https://doi.org/10.4018/978-1-60566-026-4.ch121
    Copyright Statement
    © 2009 IGI Global. Use hypertext link for access to publisher's website.
    Subject
    Image Processing
    Pattern Recognition and Data Mining
    Publication URI
    http://hdl.handle.net/10072/28121
    Collection
    • Book chapters

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia