Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain

View/ Open
Author(s)
Etheridge, Naomi
Lewohl, Joanne M
Mayfield, R Dayne
Harris, R Adron
Dodd, Peter R
Griffith University Author(s)
Year published
2009
Metadata
Show full item recordAbstract
Cognitive deficits and behavioral changes that result from chronic alcohol abuse are a consequence of neuropathological changes that alter signal transmission through the neural network. To focus on the changes that occur at the point of connection between the neural network cells, synaptosomal preparations from post‐mortem human brain of six chronic alcoholics and six non‐alcoholic controls were compared using 2‐D differential in‐gel electrophoresis (DIGE). Functionally affected and spared regions (superior frontal gyrus, SFG, and occipital cortex, OC, respectively) were analyzed from both groups to further investigate the ...
View more >Cognitive deficits and behavioral changes that result from chronic alcohol abuse are a consequence of neuropathological changes that alter signal transmission through the neural network. To focus on the changes that occur at the point of connection between the neural network cells, synaptosomal preparations from post‐mortem human brain of six chronic alcoholics and six non‐alcoholic controls were compared using 2‐D differential in‐gel electrophoresis (DIGE). Functionally affected and spared regions (superior frontal gyrus, SFG, and occipital cortex, OC, respectively) were analyzed from both groups to further investigate the specific pathological response that alcoholism has on the brain. Forty‐nine proteins were differentially regulated between the SFG of alcoholics and the SFG of controls and 94 proteins were regulated in the OC with an overlap of 23 proteins. Additionally, the SFG was compared to the OC within each group (alcoholics or controls) to identify region‐specific differences. A selection was identified by MALDI‐TOF mass spectrometry revealing proteins involved in vesicle transport, metabolism, folding and trafficking, and signal transduction, all of which have the potential to influence synaptic activity. A number of proteins identified in this study have been previously related to alcoholism; however, the focus on synaptic proteins has also uncovered novel alcoholism‐affected proteins. Further exploration of these proteins will illuminate the mechanisms altering synaptic plasticity, and thus neuronal signaling and response, in the alcoholic brain.
View less >
View more >Cognitive deficits and behavioral changes that result from chronic alcohol abuse are a consequence of neuropathological changes that alter signal transmission through the neural network. To focus on the changes that occur at the point of connection between the neural network cells, synaptosomal preparations from post‐mortem human brain of six chronic alcoholics and six non‐alcoholic controls were compared using 2‐D differential in‐gel electrophoresis (DIGE). Functionally affected and spared regions (superior frontal gyrus, SFG, and occipital cortex, OC, respectively) were analyzed from both groups to further investigate the specific pathological response that alcoholism has on the brain. Forty‐nine proteins were differentially regulated between the SFG of alcoholics and the SFG of controls and 94 proteins were regulated in the OC with an overlap of 23 proteins. Additionally, the SFG was compared to the OC within each group (alcoholics or controls) to identify region‐specific differences. A selection was identified by MALDI‐TOF mass spectrometry revealing proteins involved in vesicle transport, metabolism, folding and trafficking, and signal transduction, all of which have the potential to influence synaptic activity. A number of proteins identified in this study have been previously related to alcoholism; however, the focus on synaptic proteins has also uncovered novel alcoholism‐affected proteins. Further exploration of these proteins will illuminate the mechanisms altering synaptic plasticity, and thus neuronal signaling and response, in the alcoholic brain.
View less >
Journal Title
Proteomics: Clinical Applications
Volume
3
Issue
6
Copyright Statement
© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the pre-peer reviewed version of the following article: Proteomics- Clinical Applications, Volume 3 Issue 6, Pages 730 - 742, which has been published in final form at http://dx.doi.org/10.1002/prca.200800202
Subject
Proteomics and intermolecular interactions (excl. medical proteomics)
Medical biochemistry and metabolomics
Central nervous system