• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Validity Comparison Between Asymptotic Dispersion Energy Formalisms for Nanomaterials

    Author(s)
    Dobson, John F
    Griffith University Author(s)
    Dobson, John F.
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    The asymptotic dispersion attraction between anisotropic nanostructures has recently been shown, as a general proposition, to be anomalous in metallic and near-metallic cases. In particular it is not valid to use the common procedure of adding 1/R6 energy contributions from multiple elements separated by distance R, in cases such as graphene, two-dimensional metals, and metallic nanotubes. The most commonly used version of Lifshitz theory is also unsuitable because it is adapted only to thick-slab geometry. There is a considerable choice of analytic and semi-analytic formalisms that avoid this pitfall. Examples include (i) ...
    View more >
    The asymptotic dispersion attraction between anisotropic nanostructures has recently been shown, as a general proposition, to be anomalous in metallic and near-metallic cases. In particular it is not valid to use the common procedure of adding 1/R6 energy contributions from multiple elements separated by distance R, in cases such as graphene, two-dimensional metals, and metallic nanotubes. The most commonly used version of Lifshitz theory is also unsuitable because it is adapted only to thick-slab geometry. There is a considerable choice of analytic and semi-analytic formalisms that avoid this pitfall. Examples include (i) microscopic correlation energy calculations within the Random Phase Approximation (RPA) and related methods, (ii) several types of perturbation theory, and (iii) a summation of the zero-point or thermal energies of coupled plasmons. After a brief summary of the field, the present work provides a comparative study of the validity and utility of these methods.
    View less >
    Journal Title
    Journal of Computational and Theoretical Nanoscience
    Volume
    6
    Issue
    5
    Publisher URI
    http://www.aspbs.com/ctn/
    DOI
    https://doi.org/10.1166/jctn.2009.1131
    Copyright Statement
    © 2009 American Scientific Publishers. Self-archiving of the author-manuscript version is not yet supported by American Scientific Publishers. Please refer to the journal link for access to the definitive, published version or contact the author for more information.
    Subject
    Condensed matter modelling and density functional theory
    Mechanical engineering
    Nanotechnology
    Publication URI
    http://hdl.handle.net/10072/29222
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander