• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Book chapters
    • View Item
    • Home
    • Griffith Research Online
    • Book chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Parallel Line Search

    Author(s)
    Peachey, TC
    Abramson, D
    Lewis, A
    Griffith University Author(s)
    Lewis, Andrew J.
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    We consider the well-known line search algorithm that iteratively refines the search interval by subdivision and bracketing the optimum. In our applications, evaluations of the objective function typically require minutes or hours, so it becomes attractive to use more than the standard three steps in the subdivision, performing the evaluations in parallel. A statistical model for this scenario is presented giving the total execution time T in terms of the number of steps k and the probability distribution for the individual evaluation times. Both the model and extensive simulations show that the expected value of T does not ...
    View more >
    We consider the well-known line search algorithm that iteratively refines the search interval by subdivision and bracketing the optimum. In our applications, evaluations of the objective function typically require minutes or hours, so it becomes attractive to use more than the standard three steps in the subdivision, performing the evaluations in parallel. A statistical model for this scenario is presented giving the total execution time T in terms of the number of steps k and the probability distribution for the individual evaluation times. Both the model and extensive simulations show that the expected value of T does not fall monotonically with k, in fact more steps may significantly increase the execution time. We propose heuristics for speeding convergence by continuing to the next iteration before all evaluations are complete. Simulations are used to estimate the speedup achieved.
    View less >
    Book Title
    Optimization: Structure and Applications
    Publisher URI
    https://link.springer.com/book/10.1007/978-0-387-98096-6
    DOI
    https://doi.org/10.1007/978-0-387-98096-6_20
    Subject
    Optimisation
    Publication URI
    http://hdl.handle.net/10072/29270
    Collection
    • Book chapters

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander