Synthesis of new modified truncated peptides and inhibition of glycogen phosphorylase
Author(s)
Schweiker, Stephanie S
Loughlin, Wendy A
Brown, Christopher L
Pierens, Gregory K
Griffith University Author(s)
Year published
2009
Metadata
Show full item recordAbstract
The first solution state structural analysis (NMR) of the C-terminal sequence of human GL that binds to glycogen phosphorylase a (GPa), PEWPSYLGYEKLGPYY-NH2 (1), showed it to be in a random coil conformation. This was supported by molecular dynamics simulation (modelled in solution) using NAMD 2.6. The conformational ambiguity of the peptide makes the structural arrangement of the peptide (and internal residues) strongly dependent on the environment. Thirteen tetra-peptide fragments of the C-terminal sequence, YEKLG-NH2, and the corresponding tri- and di-peptide sequences were used in a fragment screen against GPa. Compound ...
View more >The first solution state structural analysis (NMR) of the C-terminal sequence of human GL that binds to glycogen phosphorylase a (GPa), PEWPSYLGYEKLGPYY-NH2 (1), showed it to be in a random coil conformation. This was supported by molecular dynamics simulation (modelled in solution) using NAMD 2.6. The conformational ambiguity of the peptide makes the structural arrangement of the peptide (and internal residues) strongly dependent on the environment. Thirteen tetra-peptide fragments of the C-terminal sequence, YEKLG-NH2, and the corresponding tri- and di-peptide sequences were used in a fragment screen against GPa. Compound 2 (H-GPYY-NH2) did not give an IC50 value, whereas PEWPSYLGYEKLGPYY-NH2 (1) displayed an IC50 of 34 占 against GPa. Truncated peptides derived from 1, (EKL-NH2, EKLG-NH2, and AcEKNH2) inhibited GPa (21%, 32%, 63%, respectively at 22 mM). These studies suggest key residues within the peptide chain have additional molecular interactions with GPa. The interaction of intra-sequence residues in combination with the terminal residues of PEWPSYLGYEKLGPYY with GPa may form the basis for the design of new inhibitors of GPa. Copyright 頲009 European Peptide Society and John Wiley & Sons, Ltd.
View less >
View more >The first solution state structural analysis (NMR) of the C-terminal sequence of human GL that binds to glycogen phosphorylase a (GPa), PEWPSYLGYEKLGPYY-NH2 (1), showed it to be in a random coil conformation. This was supported by molecular dynamics simulation (modelled in solution) using NAMD 2.6. The conformational ambiguity of the peptide makes the structural arrangement of the peptide (and internal residues) strongly dependent on the environment. Thirteen tetra-peptide fragments of the C-terminal sequence, YEKLG-NH2, and the corresponding tri- and di-peptide sequences were used in a fragment screen against GPa. Compound 2 (H-GPYY-NH2) did not give an IC50 value, whereas PEWPSYLGYEKLGPYY-NH2 (1) displayed an IC50 of 34 占 against GPa. Truncated peptides derived from 1, (EKL-NH2, EKLG-NH2, and AcEKNH2) inhibited GPa (21%, 32%, 63%, respectively at 22 mM). These studies suggest key residues within the peptide chain have additional molecular interactions with GPa. The interaction of intra-sequence residues in combination with the terminal residues of PEWPSYLGYEKLGPYY with GPa may form the basis for the design of new inhibitors of GPa. Copyright 頲009 European Peptide Society and John Wiley & Sons, Ltd.
View less >
Journal Title
Journal of Peptide Science
Volume
15
Copyright Statement
© 2009 European Peptide Society and John Wiley & Sons, Ltd. Self-archiving of the author-manuscript version is not yet supported by the European Peptide Society and John Wiley & Sons, Ltd. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.
Subject
Medicinal and biomolecular chemistry
Biologically active molecules
Proteins and peptides