• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • High-accuracy photogrammetric technique for human spine measurement

    Author(s)
    Chong, AK
    Milburn, P
    Newsham-West, R
    ter Voert, M
    Griffith University Author(s)
    Milburn, Peter D.
    Newsham-West, Richard J.
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Close range photogrammetry has been recognised as an essential tool for the capture of high-accuracy spatial data for medical applications, in particular work involving dynamic human body parts such as limbs. Offline and online photogrammetric systems are readily available for a number of common applications. However, off-the-shelf systems are not always appropriate because of project site conditions. To achieve high measurement accuracy in a field environment, a modified field camera calibration technique was introduced. The technique is particularly important where each camera is limited to one captured image during ...
    View more >
    Close range photogrammetry has been recognised as an essential tool for the capture of high-accuracy spatial data for medical applications, in particular work involving dynamic human body parts such as limbs. Offline and online photogrammetric systems are readily available for a number of common applications. However, off-the-shelf systems are not always appropriate because of project site conditions. To achieve high measurement accuracy in a field environment, a modified field camera calibration technique was introduced. The technique is particularly important where each camera is limited to one captured image during calibration, as the camera and the calibration testfield are in fixed positions. In this paper a custom-built imaging system designed for the study of the human spine in an outdoor environment is introduced. The discussion addresses: (1) imaging system design; (2) modified field calibration techniques; and (3) a case study on human spines. Two field camera calibration techniques were evaluated, both of which improved the accuracy of the prototype system, the use of a detachable target board offering the best results. This modified camera calibration procedure has improved the 3D measurement accuracy from 1粵 ᠰ糠mm to 0紳 ᠰ籠mm. The improvement is at a level achievable in the laboratory. The technique is considered to provide accurate and reliable anthropometric landmark measurement at low cost. This was evaluated in a clinical setting where diurnal changes in spine length and contour were measured in a cohort of 30 university students. The capability of the technique to measure sagittal and frontal angular changes provides a novel way of examining changes in spine shape.
    View less >
    Journal Title
    The Photogrammetric Record
    Volume
    24
    Issue
    127
    Publisher URI
    http://www.interscience.wiley.com/jpages/0031-868X
    DOI
    https://doi.org/10.1111/j.1477-9730.2009.00540.x
    Subject
    Geomatic engineering
    Biomechanics
    Publication URI
    http://hdl.handle.net/10072/30098
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander