• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Simplifying quantum logic using higher-dimensional Hilbert spaces

    Thumbnail
    View/Open
    58265_1.pdf (518.0Kb)
    Author(s)
    Lanyon, Benjamin P
    Barbieri, Marco
    Almeida, Marcelo P
    Jennewein, Thomas
    Ralph, Timothy C
    Resch, Kevin J
    Pryde, Geoff J
    O'Brien, Jeremy L
    Gilchrist, Alexei
    White, Andrew G
    Griffith University Author(s)
    Pryde, Geoff
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Quantum computation promises to solve fundamental, yet otherwise intractable, problems across a range of active fields of research. Recently, universal quantum logic-gate sets-the elemental building blocks for a quantum computer-have been demonstrated in several physical architectures. A serious obstacle to a full-scale implementation is the large number of these gates required to build even small quantum circuits. Here, we present and demonstrate a general technique that harnesses multi-level information carriers to significantly reduce this number, enabling the construction of key quantum circuits with existing ...
    View more >
    Quantum computation promises to solve fundamental, yet otherwise intractable, problems across a range of active fields of research. Recently, universal quantum logic-gate sets-the elemental building blocks for a quantum computer-have been demonstrated in several physical architectures. A serious obstacle to a full-scale implementation is the large number of these gates required to build even small quantum circuits. Here, we present and demonstrate a general technique that harnesses multi-level information carriers to significantly reduce this number, enabling the construction of key quantum circuits with existing technology. We present implementations of two key quantum circuits: the three-qubit Toffoli gate and the general two-qubit controlled-unitary gate. Although our experiment is carried out in a photonic architecture, the technique is independent of the particular physical encoding of quantum information, and has the potential for wider application.
    View less >
    Journal Title
    Nature Physics
    Volume
    5
    Issue
    2
    DOI
    https://doi.org/10.1038/NPHYS1150
    Copyright Statement
    © 2009 Nature Publishing Group. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Mathematical sciences
    Physical sciences
    Publication URI
    http://hdl.handle.net/10072/30259
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander