Show simple item record

dc.contributor.authorP. Lanyon, Benjaminen_US
dc.contributor.authorBarbieri, Marcoen_US
dc.contributor.authorP. Almeida, Marceloen_US
dc.contributor.authorJennewein, Thomasen_US
dc.contributor.authorC. Ralph, Timothyen_US
dc.contributor.authorJ. Resch, Kevinen_US
dc.contributor.authorPryde, Geoffen_US
dc.contributor.authorL. O'Brien, Jeremyen_US
dc.contributor.authorGilchrist, Alexeien_US
dc.contributor.authorG. White, Andrewen_US
dc.date.accessioned2017-04-24T12:35:00Z
dc.date.available2017-04-24T12:35:00Z
dc.date.issued2009en_US
dc.date.modified2010-10-13T10:00:45Z
dc.identifier.issn1745-2473en_US
dc.identifier.doi10.1038/NPHYS1150en_AU
dc.identifier.urihttp://hdl.handle.net/10072/30259
dc.description.abstractQuantum computation promises to solve fundamental, yet otherwise intractable, problems across a range of active fields of research. Recently, universal quantum logic-gate sets-the elemental building blocks for a quantum computer-have been demonstrated in several physical architectures. A serious obstacle to a full-scale implementation is the large number of these gates required to build even small quantum circuits. Here, we present and demonstrate a general technique that harnesses multi-level information carriers to significantly reduce this number, enabling the construction of key quantum circuits with existing technology. We present implementations of two key quantum circuits: the three-qubit Toffoli gate and the general two-qubit controlled-unitary gate. Although our experiment is carried out in a photonic architecture, the technique is independent of the particular physical encoding of quantum information, and has the potential for wider application.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_AU
dc.format.extent530504 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglishen_US
dc.language.isoen_AU
dc.publisherNature Publishing Groupen_US
dc.publisher.placeUnited Kingdomen_US
dc.relation.ispartofstudentpublicationNen_AU
dc.relation.ispartofpagefrom134en_US
dc.relation.ispartofpageto140en_US
dc.relation.ispartofissue2en_US
dc.relation.ispartofjournalNature Physicsen_US
dc.relation.ispartofvolume5en_US
dc.rights.retentionYen_AU
dc.subject.fieldofresearchcode240402en_US
dc.titleSimplifying quantum logic using higher-dimensional Hilbert spacesen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.rights.copyrightCopyright 2009 Nature Publishing Group. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.en_AU
gro.date.issued2009
gro.hasfulltextFull Text


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record