• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical study of hydrogen permeation flux in ytterbium doped strontium cerate and thulium doped strontium cerate (II)

    Author(s)
    Matsuka, Maki
    Braddock, Roger D
    Agranovski, Igor E
    Griffith University Author(s)
    Braddock, Roger D.
    Agranovski, Igor E.
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    This study analyses the hydrogen permeation flux model with (1) modifications in the defect concentration calculations where the concentration of substitutional cation on cerium site is utilised as the independent variable for the calculation, instead of the previous step-wise calculation with the concentration of oxygen vacancy as the independent variable and (2) the additional terms to include the oxygen partial pressure gradients for calculation of hydrogen permeation flux. The modification in the defect concentration method allows a short model simulation run time, which consequently allows incorporation of the ...
    View more >
    This study analyses the hydrogen permeation flux model with (1) modifications in the defect concentration calculations where the concentration of substitutional cation on cerium site is utilised as the independent variable for the calculation, instead of the previous step-wise calculation with the concentration of oxygen vacancy as the independent variable and (2) the additional terms to include the oxygen partial pressure gradients for calculation of hydrogen permeation flux. The modification in the defect concentration method allows a short model simulation run time, which consequently allows incorporation of the concentration constraints in the parametric sensitivity analysis, but still produces the same set of defect concentrations as calculated in the previous methods. It is also found in this study that the discrepancy between the model and experimental results (in terms of the effect of changes in hydrogen partial pressure gradients on the hydrogen permeation flux) is not due to the influence of oxygen partial pressure gradients. Parametric sensitivity analysis shows that there is no significant difference in the sensitivity of the model by comparing Case A and B. The result of parameter tuning to predict the hydrogen permeation flux for 5% thulium doped strontium cerate in Case B shows a similar trend to the previous study (Case A). These results suggest negligible oxygen ion conductivities in these types of membrane, as reported in the literature.
    View less >
    Journal Title
    Mathematics and computers in simulation
    Volume
    79
    Issue
    9
    DOI
    https://doi.org/10.1016/j.matcom.2008.11.012
    Subject
    Mathematical sciences
    Physical sciences
    Information and computing sciences
    Organic semiconductors
    Publication URI
    http://hdl.handle.net/10072/30318
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander