• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Immune response mechanisms against Pseudomonas aeruginosa associated with mucosal immunization with protein antigens in a rat model of acute lung infection

    Thumbnail
    View/Open
    62514_1.pdf (593.2Kb)
    Author(s)
    Thomas, Linda D
    Cripps, Allan W
    Kyd, Jennelle M
    Griffith University Author(s)
    Cripps, Allan W.
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Pseudomonas aeruginosa is a major cause of nosocomal and community acquired chronic infections in subjects with compromised respiratory function. The microbe is environmentally ubiquitious and has a high level of innate antimicrobial resistance. This has led researchers to investigate vaccine and immunotherapeutic approaches to prevent and treat P. aeruginosa infections. Seven cytosolic non-integral proteins were studied as vaccine candidates in an acute lung infection model in the rat. Five of these (amidase, amidopeptidase, KatE, KatE and Pa13 a novel 13 kDa protein) enhanced bacterial clearance from the lung compared to ...
    View more >
    Pseudomonas aeruginosa is a major cause of nosocomal and community acquired chronic infections in subjects with compromised respiratory function. The microbe is environmentally ubiquitious and has a high level of innate antimicrobial resistance. This has led researchers to investigate vaccine and immunotherapeutic approaches to prevent and treat P. aeruginosa infections. Seven cytosolic non-integral proteins were studied as vaccine candidates in an acute lung infection model in the rat. Five of these (amidase, amidopeptidase, KatE, KatE and Pa13 a novel 13 kDa protein) enhanced bacterial clearance from the lung compared to control animals following challenge and are worthy of further study. Immune mechanisms stimulated by these proteins in response to both immunization and infection varied. The most pronounced degree of bacterial clearance from the lung was associated with antigens, which demonstrated greater surface exposure and induced an increase in phagocyte recruitment, in particular, an increased proportion of polymorphonuclear leukocytes. Lymphocytic proliferation and specific antibody responses in the absence of enhanced clearance were less informative as immune correlates.
    View less >
    Journal Title
    Vaccine
    Volume
    27
    Issue
    25-26
    DOI
    https://doi.org/10.1016/j.vaccine.2009.01.085
    Copyright Statement
    © 2009 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Biological sciences
    Animal immunology
    Agricultural, veterinary and food sciences
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/30571
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander