• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Oral cancer diagnosis by mechanical phenotyping

    Author(s)
    Remmerbach, Torsten
    Wottawah, Falk
    Dietrich, Julia
    Lincoln, Bryan
    Wittekind, Christian
    Guck, Jochen
    Griffith University Author(s)
    Remmerbach, Torsten W.
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Oral squamous cell carcinomas are among the 10 most common cancers and have a 50% lethality rate after 5 years. Despite easy access to the oral cavity for cancer screening, the main limitations to successful treatment are uncertain prognostic criteria for (pre-)malignant lesions. Identifying a functional cellular marker may represent a significant improvement for diagnosis and treatment. Toward this goal, mechanical phenotyping of individual cells is a novel approach to detect cytoskeletal changes, which are diagnostic for malignant change. The compliance of cells from cell lines and primary samples of healthy donors and ...
    View more >
    Oral squamous cell carcinomas are among the 10 most common cancers and have a 50% lethality rate after 5 years. Despite easy access to the oral cavity for cancer screening, the main limitations to successful treatment are uncertain prognostic criteria for (pre-)malignant lesions. Identifying a functional cellular marker may represent a significant improvement for diagnosis and treatment. Toward this goal, mechanical phenotyping of individual cells is a novel approach to detect cytoskeletal changes, which are diagnostic for malignant change. The compliance of cells from cell lines and primary samples of healthy donors and cancer patients was measured using a microfluidic optical stretcher. Cancer cells showed significantly different mechanical behavior, with a higher mean deformability and increased variance. Cancer cells (n approximately 30 cells measured from each patient) were on average 3.5 times more compliant than those of healthy donors [D(normal) = (4.43 +/- 0.68) 10(-3) Pa(-1); D(cancer) = (15.8 +/- 1.5) 10(-3) Pa(-1); P < 0.01]. The diagnosis results of the patient samples were confirmed by standard histopathology. The generality of these findings was supported by measurements of two normal and four cancer oral epithelial cell lines. Our results indicate that mechanical phenotyping is a sensible, label-free approach for classifying cancer cells to enable broad screening of suspicious lesions in the oral cavity. It could in principle be applied to any cancer to aid conventional diagnostic procedures.
    View less >
    Journal Title
    Cancer Research
    Volume
    69
    Issue
    5
    DOI
    https://doi.org/10.1158/0008-5472.CAN-08-4073
    Subject
    Optical Physics not elsewhere classified
    Cancer Diagnosis
    Oncology and Carcinogenesis
    Publication URI
    http://hdl.handle.net/10072/31199
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander