• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Large-scale simultaneous inference with applications to the detection of differential expression with microarray data

    Thumbnail
    View/Open
    61721_1.pdf (448.9Kb)
    Author(s)
    McLachlan, G.
    Wang, K.
    Ng, S.
    Griffith University Author(s)
    Ng, Shu Kay Angus
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    An important problem in microarray experiments is the detection of genes that are differentially expressed in agiven mumber of classes. We consider a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. By converting to a z-score the value of the test statistic used to test the significance ...
    View more >
    An important problem in microarray experiments is the detection of genes that are differentially expressed in agiven mumber of classes. We consider a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. By converting to a z-score the value of the test statistic used to test the significance of each gene, we can use a simple two-component normal mixture to model adequately the distribution of this score. In the context of the application of this approach to a well known breast cancer data set, we consider some of the issues associated with the problem of the detection of differential expression, including the case where there is need for the use of an empirical null distribution in place of the standard normal (the theoretical null) and the case where none of the genes might be differentially expressed. We also describe briefly some initial results on a cluster analysis approach to this problem, which attempts to model the joint distribution of the individual gene expressions. This latter approach thus has to make distributional assumptions which are note necessary with the former approach based on the z-scores. However, in the case where the distributional assumptions are valid, it has the potential to provide a more powerful analysis.
    View less >
    Journal Title
    Statistica
    Volume
    68
    Issue
    1
    DOI
    https://doi.org/10.6092/issn.1973-2201/3525
    Copyright Statement
    © 2008 Alma Mater Studiorum, Università di Bologna. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Publication URI
    http://hdl.handle.net/10072/32041
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander