Recent advances in the application of 13c and 15N NMR spectroscopy to soil organic matter studies
Author(s)
Mathers, NJ
Mao, XA
Xu, ZH
Saffigna, PG
Berners-Price, SJ
Perera, MCS
Year published
2000
Metadata
Show full item recordAbstract
Nuclear magnetic resonance (NMR) spectroscopy has been applied to many studies in soil science, geochemistry, and environmental science. In recent years, the study of soil organic matter (SOM) using NMR techniques has progressed rapidly. NMR spectroscopy has been used to study chemical changes of SOM during decomposition, and also of soil extract fractions such as humic acid and fulvic acid. NMR spectroscopy of soils has improved rapidly in recent years with the introduction of pre-treatment and particle-size fractionation. In addition to routine liquid- and solid-state 13C NMR applications, 15N NMR spectra of natural abundant ...
View more >Nuclear magnetic resonance (NMR) spectroscopy has been applied to many studies in soil science, geochemistry, and environmental science. In recent years, the study of soil organic matter (SOM) using NMR techniques has progressed rapidly. NMR spectroscopy has been used to study chemical changes of SOM during decomposition, and also of soil extract fractions such as humic acid and fulvic acid. NMR spectroscopy of soils has improved rapidly in recent years with the introduction of pre-treatment and particle-size fractionation. In addition to routine liquid- and solid-state 13C NMR applications, 15N NMR spectra of natural abundant samples have been reported, but 15N-enriched material is more convenient to use due to the low natural abundance of 15N. Some newly developed NMR techniques have also been utilised, such as 2-dimensional NMR spectroscopy and improved 1H NMR techniques. These are reviewed and commented on in this paper.
View less >
View more >Nuclear magnetic resonance (NMR) spectroscopy has been applied to many studies in soil science, geochemistry, and environmental science. In recent years, the study of soil organic matter (SOM) using NMR techniques has progressed rapidly. NMR spectroscopy has been used to study chemical changes of SOM during decomposition, and also of soil extract fractions such as humic acid and fulvic acid. NMR spectroscopy of soils has improved rapidly in recent years with the introduction of pre-treatment and particle-size fractionation. In addition to routine liquid- and solid-state 13C NMR applications, 15N NMR spectra of natural abundant samples have been reported, but 15N-enriched material is more convenient to use due to the low natural abundance of 15N. Some newly developed NMR techniques have also been utilised, such as 2-dimensional NMR spectroscopy and improved 1H NMR techniques. These are reviewed and commented on in this paper.
View less >
Journal Title
Australian Journal of Soil Research
Volume
38
Subject
History, heritage and archaeology
Soil sciences