• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Further Development of an Electrochemical DNA Hybridization Biosensor based on Long-Range Electron Transfer

    Author(s)
    L. S. Wong, Elicia
    J. Mearns, Freya
    Justin Gooding, J.
    Griffith University Author(s)
    Mearns, Freya
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    An electrochemical DNA hybridization biosensor which exploits long-range electron transfer through double-stranded DNA (ds-DNA) to a redox intercalator is described. The DNA recognition interface consisted of a mixed self-assembled monolayer of synthetic thiolated single-stranded DNA (ss-DNA) and 6-mercapto-1-hexanol (MCH). The target DNA detection is performed electrochemically through cyclic and Osteryoung square wave voltammetry, using anthraquinone derivatives as the intercalators. This biosensor has the ability to differentiate complementary target ss-DNA from non-complementary target, and most importantly, it is able ...
    View more >
    An electrochemical DNA hybridization biosensor which exploits long-range electron transfer through double-stranded DNA (ds-DNA) to a redox intercalator is described. The DNA recognition interface consisted of a mixed self-assembled monolayer of synthetic thiolated single-stranded DNA (ss-DNA) and 6-mercapto-1-hexanol (MCH). The target DNA detection is performed electrochemically through cyclic and Osteryoung square wave voltammetry, using anthraquinone derivatives as the intercalators. This biosensor has the ability to differentiate complementary target ss-DNA from non-complementary target, and most importantly, it is able to detect single-base mismatch target ss-DNA through diminution in voltammetric current. The viability of this biosensor has also been investigated through selectivity studies in the presence of interferences and the generality of the detection scheme.
    View less >
    Journal Title
    Sensors and Actuators B
    Volume
    111-112
    DOI
    https://doi.org/10.1016/j.snb.2005.03.072
    Subject
    Electroanalytical Chemistry
    Sensor Technology (Chemical aspects)
    Optical Physics
    Analytical Chemistry
    Materials Engineering
    Publication URI
    http://hdl.handle.net/10072/32462
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander