• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Assessment of the Reproductive-Endocrine Disrupting Potential of Chlorine Dioxide Oxidation Products of Plant Sterols

    Author(s)
    van den Heuvel, MR
    Leusch, FDL
    Taylor, S
    Shannon, N
    McKague, AB
    Griffith University Author(s)
    Leusch, Frederic
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    This study examined the hypothesis that chlorine dioxide bleaching used in pulp and paper production causes the formation of reproductive-endocrine disrupting compounds from plant sterols. This was tested by conducting a laboratory simulation of the chlorine dioxide oxidation of two plant sterols, ⭳itosterol and stigmasterol. Oxidation products of the plant sterol ⭳itosterol were purified and identified and found to be cholestan-24-ethyl-3-one, 4-cholestene-24-ethyl-3-one, and 4-cholestene-24-ethyl-3,6- dione. The first two compounds were found in a number of pulp and paper effluents and biosolids. The sterols and ...
    View more >
    This study examined the hypothesis that chlorine dioxide bleaching used in pulp and paper production causes the formation of reproductive-endocrine disrupting compounds from plant sterols. This was tested by conducting a laboratory simulation of the chlorine dioxide oxidation of two plant sterols, ⭳itosterol and stigmasterol. Oxidation products of the plant sterol ⭳itosterol were purified and identified and found to be cholestan-24-ethyl-3-one, 4-cholestene-24-ethyl-3-one, and 4-cholestene-24-ethyl-3,6- dione. The first two compounds were found in a number of pulp and paper effluents and biosolids. The sterols and their oxidation products were tested in vitro using bioassays for androgenicity and estrogenicity. A 28 d in vivo bioassay was employed to examine masculinization in female mosquitofish. In vitro bioassays revealed little estrogenic activity in the parent sterols or in mixtures of their oxidation products. Androgenic activity as measured by the androgen receptor binding bioassay was in the order of 19-96 �g testosterone equivalents but with no increase or decrease with chlorine dioxide oxidation. The mosquitofish bioassay did not show significant masculinization for any of the preparations tested. A number of androstane steroids were identified in the sterols tested, however, those compounds could only account for a small fraction of the androgenic activity in the sterols. It was clear that the parent sterols were not themselves acting as androgens in the bioassays used. This study indicated that chlorine dioxide oxidation of sterols produced predominantly oxidized sterols that were not likely to act through androgenic or estrogenic mechanisms.
    View less >
    Journal Title
    Environmental Science & Technology
    Volume
    40
    Issue
    8
    DOI
    https://doi.org/10.1021/es060089u
    Subject
    Atmospheric composition, chemistry and processes
    Publication URI
    http://hdl.handle.net/10072/32487
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander