• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Analysis on pore pressure in a porous seabed in the vicinity of a caisson

    Author(s)
    Jeng, DS
    Cha, DH
    Lin, YS
    Hu, PS
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Cha, Fred
    Year published
    2000
    Metadata
    Show full item record
    Abstract
    This paper presents an analysis of pore pressure around a caisson-type breakwater subjected to dynamic wave loading. Unlike previous investigations for wave-seabed-caisson interaction, cross-anisotropic soil behaviour is considered in this paper. Based on a linear poro-elastic theory, a finite element model is developed. A parametric study related to the effects of wave parameters, soil characteristics and geometry of caisson and rubble mound base on the pore pressure around a caisson is performed. The numerical results indicate that the effects of anisotropic soil behaviour on the wave-induced pore pressure in a sandy bed ...
    View more >
    This paper presents an analysis of pore pressure around a caisson-type breakwater subjected to dynamic wave loading. Unlike previous investigations for wave-seabed-caisson interaction, cross-anisotropic soil behaviour is considered in this paper. Based on a linear poro-elastic theory, a finite element model is developed. A parametric study related to the effects of wave parameters, soil characteristics and geometry of caisson and rubble mound base on the pore pressure around a caisson is performed. The numerical results indicate that the effects of anisotropic soil behaviour on the wave-induced pore pressure in a sandy bed beneath a caisson are not negligible.
    View less >
    Journal Title
    Applied Ocean Research
    Volume
    22
    DOI
    https://doi.org/10.1016/S0141-1187(00)00023-7
    Subject
    Oceanography
    Civil engineering
    Resources engineering and extractive metallurgy
    History, heritage and archaeology
    Publication URI
    http://hdl.handle.net/10072/3321
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander