• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Parameterising competing zooplankton for survival in plankton functional type models

    Thumbnail
    View/Open
    63591_1.pdf (505.2Kb)
    Author(s)
    Cropp, Roger
    Norbury, John
    Griffith University Author(s)
    Cropp, Roger A.
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Marine plankton ecosystems are an important component of biogeochemical cycling in the oceans. Operational plankton functional type (PFT) models, that group plankton according to their biogeochemical properties, are currently being developed to resolve biogenic gas exchange between the ocean and atmosphere, and to model the lowest trophic levels in fisheries models. A fundamental problem with these models is that PFTs often go extinct in computer simulations, effectively removing the biogeochemical processes from the models. Cropp and Norbury [Cropp, R., Norbury, J., 2009a. Parameterizing plankton functional type models: ...
    View more >
    Marine plankton ecosystems are an important component of biogeochemical cycling in the oceans. Operational plankton functional type (PFT) models, that group plankton according to their biogeochemical properties, are currently being developed to resolve biogenic gas exchange between the ocean and atmosphere, and to model the lowest trophic levels in fisheries models. A fundamental problem with these models is that PFTs often go extinct in computer simulations, effectively removing the biogeochemical processes from the models. Cropp and Norbury [Cropp, R., Norbury, J., 2009a. Parameterizing plankton functional type models: insights from a dynamical systems perspective. J. Plankton Res. 31, 939-963] demonstrated that parameter combinations that allowed all PFTs to stay extant for all time in stable, homogeneous environments were rare in a PFT model with two competing phytoplankton and one zooplankton (NP1P2Z). In this paper, we examine the dynamical properties of a generic predator-predator-prey PFT model, and apply the analysis techniques developed by Cropp and Norbury to a simple example PFT model with one phytoplankton and two zooplankton (NPZ1Z2) in order to explore its properties and parameter space. We find that the properties of predator-predator-prey PFT systems are fundamentally different from those of predator-prey-prey PFT systems. The likelihood of parameter combinations for which all PFTs stay extant for all time in predator-predator-prey PFT systems depends critically on the process formulations used, and the properties of co-existing zooplankton (as defined by their parameter values) are quite different to those of co-existing phytoplankton.
    View less >
    Journal Title
    Ecological Modelling
    Volume
    221
    Issue
    16
    DOI
    https://doi.org/10.1016/j.ecolmodel.2010.05.004
    Copyright Statement
    © 2010 Elsevier B.V. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Ecosystem function
    Publication URI
    http://hdl.handle.net/10072/33275
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander