• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Cystic fibrosis and bacterial colonization define the sputum N-glycosylation phenotype

    Author(s)
    Venkatakrishnan, Vignesh
    Thaysen-Andersen, Morten
    Chen, Sharon C. A.
    Nevalainen, Helena
    Packer, Nicolle H.
    Griffith University Author(s)
    Packer, Nicki
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Although mucin O-glycosylation of sputum from individuals suffering from cystic fibrosis (CF) is known to be altered relative to their unaffected counterparts, protein N-glycosylation of CF sputum remains structurally and functionally under-characterized. We report the first N-glycome of soluble proteins in sputum derived from five CF patients, two pathogen-free and two pathogen-infected/colonized non-CF individuals suffering from other pulmonary conditions. N-Glycans were profiled using porous graphitized carbon-liquid chromatography-negative ion-tandem mass spectrometry following enzymatic release from sputum proteins. The ...
    View more >
    Although mucin O-glycosylation of sputum from individuals suffering from cystic fibrosis (CF) is known to be altered relative to their unaffected counterparts, protein N-glycosylation of CF sputum remains structurally and functionally under-characterized. We report the first N-glycome of soluble proteins in sputum derived from five CF patients, two pathogen-free and two pathogen-infected/colonized non-CF individuals suffering from other pulmonary conditions. N-Glycans were profiled using porous graphitized carbon-liquid chromatography-negative ion-tandem mass spectrometry following enzymatic release from sputum proteins. The composition, topology and linkage isomers of 68 N-glycans were characterized and relatively quantified. Recurring structural features in all sputum N-glycomes were terminal α2,6-sialylation, α1,6-core fucosylation, β1,4-bisecting GlcNAcylation and compositions indicating paucimannosylation. Despite covering different genotypes, age, gender and microbial flora, the sputum N-glycomes showed little interpatient and longitudinal variation within CF patients. Comparative N-glycome analysis between inter-patient group revealed that lung infection/colonization, in general, extensively enriches the CF sputum N-glycosylation phenotype with paucimannose with simultaneous over-sialylation/fucosylation and under-bisecting GlcNAcylation of complex/hybrid N-glycans. In contrast, the sputum from CF patients had only slightly increased abundance of paucimannose N-glycans relative to pathogen-infected/colonized non-CF individuals. Similar to mucin O-glycosylation, protein N-glycosylation appears to be regulated primarily as a secondary effect of bacterial infection and inflammation rather than the CF pathogenesis in sputum. This study provides new structural N-glycan information to help understand the complex cellular and molecular environment of the CF affected respiratory tract.
    View less >
    Journal Title
    Glycobiology
    Volume
    25
    Issue
    1
    DOI
    https://doi.org/10.1093/glycob/cwu092
    Subject
    Biological sciences
    Biochemistry and cell biology not elsewhere classified
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/336517
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander