• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change

    Author(s)
    Wood, Susanna A
    Borges, Hugo
    Puddick, Jonathan
    Biessy, Laura
    Atalah, Javier
    Hawes, Ian
    Dietrich, Daniel R
    Hamilton, David P
    Griffith University Author(s)
    Hamilton, David P.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Current climate change scenarios predict that aquatic systems will experience increases in temperature, thermal stratification, water column stability and in some regions, greater precipitation. These factors have been associated with promoting cyanobacterial blooms. However, limited data exist on how cyanobacterial composition and toxin production will be affected. Using a shallow eutrophic lake, we investigated how precipitation intensity and extended droughts influenced: (i) physical and chemical conditions, (ii) cyanobacterial community succession, and (iii) toxin production by Microcystis. Moderate levels of nitrate ...
    View more >
    Current climate change scenarios predict that aquatic systems will experience increases in temperature, thermal stratification, water column stability and in some regions, greater precipitation. These factors have been associated with promoting cyanobacterial blooms. However, limited data exist on how cyanobacterial composition and toxin production will be affected. Using a shallow eutrophic lake, we investigated how precipitation intensity and extended droughts influenced: (i) physical and chemical conditions, (ii) cyanobacterial community succession, and (iii) toxin production by Microcystis. Moderate levels of nitrate related to intermittent high rainfall during the summer of 2013–2014, lead to the dominance of Aphanizomenon gracile and Dolichospermumcrassum (without heterocytes). Microcystis aeruginosa blooms occurred when ammonium concentrations and water temperature increased, and total nitrogen:total phosphorus ratios were low. In contrast, an extended drought (2014–2015 summer) resulted in prolonged stratification, increased dissolved reactive phosphorus, and low dissolved inorganic nitrogen concentrations. All A. gracile and D. crassum filaments contained heterocytes, M. aeruginosa density remained low, and the picocyanobacteria Aphanocapsa was abundant. A positive relationship (P < 0.001) was identified between microcystin quotas and surface water temperature. These results highlight the complex successional interplay of cyanobacteria species and demonstrated the importance of climate through its effect on nutrient concentrations, water temperature, and stratification.
    View less >
    Journal Title
    Hydrobiologia
    Volume
    785
    Issue
    1
    DOI
    https://doi.org/10.1007/s10750-016-2904-6
    Funder(s)
    ARC
    Grant identifier(s)
    DP190101848
    Subject
    Earth sciences
    Environmental sciences
    Environmental management not elsewhere classified
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/336688
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander