• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Facile Synthesis of High-concentration, Stable Aqueous Dispersions of Uniform Silver Nanoparticles Using Aniline as a Reductant

    Author(s)
    Yang, Jiping
    Yin, Huajie
    Jia, Jingjing
    Wei, Yen
    Griffith University Author(s)
    Yin, Huajie
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    A facile method was developed for preparing uniform silver nanoparticles with small particle sizes of less than 10 nm at high concentrations, in which aniline was used to reduce silver nitrate (AgNO3) to silver nanoparticles in the presence of dodecylbenzenesulfonic acid (DBSA) as a stabilizer. Upon the addition of excess NaOH to the DBSA−aniline−AgNO3 (DAA) system, the formation of silver nanoparticles was almost complete in just 2 min at 90 °C (in 94% yield). The average size of those resultant silver nanoparticles was 8.9 ± 1.1 nm, and the colloids were stable for more than 1 year at ambient temperature. A possible mechanism ...
    View more >
    A facile method was developed for preparing uniform silver nanoparticles with small particle sizes of less than 10 nm at high concentrations, in which aniline was used to reduce silver nitrate (AgNO3) to silver nanoparticles in the presence of dodecylbenzenesulfonic acid (DBSA) as a stabilizer. Upon the addition of excess NaOH to the DBSA−aniline−AgNO3 (DAA) system, the formation of silver nanoparticles was almost complete in just 2 min at 90 °C (in 94% yield). The average size of those resultant silver nanoparticles was 8.9 ± 1.1 nm, and the colloids were stable for more than 1 year at ambient temperature. A possible mechanism for the formation of silver nanoparticles was proposed to be related to two factors: one was the mesoscopic structures of the DAA system in which silver ions were restricted in the dispersed phases composed of DBSA and aniline; the other was Ag2O nanocrystallites generated in situ that could be readily reduced by aniline to small silver nanoparticles at high concentrations.
    View less >
    Journal Title
    Langmuir
    Volume
    27
    Issue
    8
    DOI
    https://doi.org/10.1021/la200013z
    Subject
    Macromolecular and Materials Chemistry not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/337233
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander