• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Modelling the response of a highly eutrophic lake to reductions in external and internal nutrient loading

    Author(s)
    Ozkundakci, D
    Hamilton, DP
    Trolle, D
    Griffith University Author(s)
    Hamilton, David P.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    The reduction of macronutrients to levels that limit primary production is often a critical element of mitigating eutrophication and reducing the potential for algal blooms. Lake Okaro has remained highly eutrophic despite an intensive catchment and in-lake restoration programme, including implementation of a constructed wetland, riparian protection, an alum application and application of a modified zeolite mineral (Z2G1) to reduce internal nutrient loading. A one-dimensional process-based ecosystem model (DYRESM-CAEDYM) was used in this study to investigate the need for further nutrient loading reductions of both nitrogen ...
    View more >
    The reduction of macronutrients to levels that limit primary production is often a critical element of mitigating eutrophication and reducing the potential for algal blooms. Lake Okaro has remained highly eutrophic despite an intensive catchment and in-lake restoration programme, including implementation of a constructed wetland, riparian protection, an alum application and application of a modified zeolite mineral (Z2G1) to reduce internal nutrient loading. A one-dimensional process-based ecosystem model (DYRESM-CAEDYM) was used in this study to investigate the need for further nutrient loading reductions of both nitrogen (N) and phosphorus (P). The model was calibrated against field data for a 2-year period and validated over two separate 1-year periods. Model simulations suggest that the trophic status of the lake, measured quantitatively with the Trophic Level Index (TLI), could shift from highly eutrophic to mesotrophic with external and internal loads of both N and P reduced by 75–90%. The magnitude of the nutrient load reductions is indicative of a major challenge in being able to effect transitions across trophic state categories for eutrophic lakes.
    View less >
    Journal Title
    New Zealand Journal of Marine and Freshwater Research
    Volume
    45
    Issue
    2
    DOI
    https://doi.org/10.1080/00288330.2010.548072
    Subject
    Environmental Science and Management not elsewhere classified
    Earth Sciences
    Environmental Sciences
    Biological Sciences
    Publication URI
    http://hdl.handle.net/10072/337279
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander