• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effect of Boron-doped Goethite on Soil Acidity, Different Forms of Manganese in Red Soil and the Growth of Rape (Brassica napus L.) Seedlings

    Author(s)
    Cui, Jingzhen
    Zhu, Duanwei
    Liao, Shuijiao
    Liu, Guanglong
    Ren, Liying
    Zhou, Wenbing
    Hamilton, David
    Griffith University Author(s)
    Hamilton, David P.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Rape (Brassica napus L.) seedling pot experiments were performed with a red soil treated with goethite which had boron (B) either adsorbed (ad-B-goethite) or occluded (oc-B-goethite). Soil acidity, different forms of manganese in the soils and different elements content of the rape seedlings were determined. It was found that the addition of boron-containing goethite to the soils resulted in increased rape growth, elevated soil pH and decreased exchangeable acidity. Compared with the control, boron-containing goethite elevated the content of exchangeable manganese (Mn) (EXC-Mn), organic matter bound Mn (OM-Mn), reducible ...
    View more >
    Rape (Brassica napus L.) seedling pot experiments were performed with a red soil treated with goethite which had boron (B) either adsorbed (ad-B-goethite) or occluded (oc-B-goethite). Soil acidity, different forms of manganese in the soils and different elements content of the rape seedlings were determined. It was found that the addition of boron-containing goethite to the soils resulted in increased rape growth, elevated soil pH and decreased exchangeable acidity. Compared with the control, boron-containing goethite elevated the content of exchangeable manganese (Mn) (EXC-Mn), organic matter bound Mn (OM-Mn), reducible oxide Mn (RO-Mn) and residual Mn (RES-Mn) which were difficult to use for plant. Low labile organic matter was significantly correlated with easily reducible oxide Mn (ERO-Mn) (P < 0.01) and RO-Mn (P < 0.05). Middle organic matter and soil pH was significantly (P < 0.05) correlated with RES-Mn. Stepwise regression was used to select the combination of variables that best estimates shoot and root dry weight of rape seedling. Among them, soil pH, EXC-Mn, OM-Mn, RO-Mn and RES-Mn significantly influenced the dry weight of rape seedlings. The addition of boron-containing goethite improved the uptake of iron (Fe), calcium (Ca), magnesium (Mg), and copper (Cu) element and decreased the uptake of Mn and zinc (Zn) element in rape seedling. The results suggested that boron-containing goethite could provide a better soil acidity environment for plant growth; it was also an important agent increasing a part of manganese difficult to use for plant and reducing the activity of soil manganese, which was beneficial to altering rape seedling growth.
    View less >
    Journal Title
    Journal of Plant Nutrition
    Volume
    35
    Issue
    13
    DOI
    https://doi.org/10.1080/01904167.2012.716129
    Subject
    Soil sciences
    Soil sciences not elsewhere classified
    Plant biology
    Crop and pasture production
    Publication URI
    http://hdl.handle.net/10072/337287
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander