• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Recognition of driver's fatigue expression using Local Multiresolution Derivative Pattern

    Author(s)
    Zhao, C
    Zhang, Y
    Zhang, X
    He, J
    Griffith University Author(s)
    Zhang, Paul
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    To develop the human-centric driver fatigue monitoring system for automatic understanding and charactering of driver’s conditions, a novel, efficient feature extraction approach, named Local Multiresolution Derivative Pattern (LMDP), is proposed to describe the driver’s fatigue expression images, and the Intersection Kernel Support Vector Machines classifier is then exploited to recognize three pre-defined classes of fatigue expressions, i.e., awake expressions, moderate fatigue expressions and severe fatigue expressions. With features extracted from a fatigue expressions dataset created at Southeast University, the holdout ...
    View more >
    To develop the human-centric driver fatigue monitoring system for automatic understanding and charactering of driver’s conditions, a novel, efficient feature extraction approach, named Local Multiresolution Derivative Pattern (LMDP), is proposed to describe the driver’s fatigue expression images, and the Intersection Kernel Support Vector Machines classifier is then exploited to recognize three pre-defined classes of fatigue expressions, i.e., awake expressions, moderate fatigue expressions and severe fatigue expressions. With features extracted from a fatigue expressions dataset created at Southeast University, the holdout and cross-validation experiments on fatigue expressions classification are conducted by the Intersection Kernel Support Vector Machines classifier, compared with three commonly used classification methods including the k-nearest neighbor classifier, the multilayer perception classifier and the dissimilarity-based classifier. The experimental results of holdout and cross-validation showed that LMDP offers the better performance than Local Derivative Pattern, and the second order LMDP exceeds other order LMDP. With the second order LMDP and the Intersection Kernel Support Vector Machines classifier, the classification accuracies of the severe fatigue are over 90% in the holdout and cross-validation experiments, thus demonstrating the effectiveness of the proposed feature extraction method in automatically understanding the driver’s conditions towards the human-centric driver fatigue monitoring system.
    View less >
    Journal Title
    Journal of Intelligent and Fuzzy Systems
    Volume
    30
    DOI
    https://doi.org/10.3233/IFS-151779
    Subject
    Artificial intelligence
    Cognitive and computational psychology
    Publication URI
    http://hdl.handle.net/10072/337406
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander