Facile electrochemical approach for the production of graphite oxide with tunable chemistry

View/ Open
Author(s)
Tian, Zhiming
Yu, Pei
Lowe, Sean E
Pandolfo, Anthony G
Gengenbach, Thomas R
Nairn, Kate M
Song, Jingchao
Wang, Xin
Zhong, Yu Lin
Li, Dan
Year published
2017
Metadata
Show full item recordAbstract
Reproducible and in-depth studies of the electrochemical graphite intercalation and oxidation processes were carried out with the use of an electrochemical Tee-cell setup. The electrochemical method allowed simpler and greater controllability over the level of oxidation/functionalization, relative to the commonly employed chemical oxidation approach (e.g. the modified Hummers method). Extensive characterization was carried out to understand the properties of the electrochemically-derived graphite oxide (EGrO), and it was found that the abundance of each functionality was highly dependent on the electrochemical reaction time ...
View more >Reproducible and in-depth studies of the electrochemical graphite intercalation and oxidation processes were carried out with the use of an electrochemical Tee-cell setup. The electrochemical method allowed simpler and greater controllability over the level of oxidation/functionalization, relative to the commonly employed chemical oxidation approach (e.g. the modified Hummers method). Extensive characterization was carried out to understand the properties of the electrochemically-derived graphite oxide (EGrO), and it was found that the abundance of each functionality was highly dependent on the electrochemical reaction time or the concentration of the electrolyte (perchloric acid) employed. Notably, the amount of oxygen functional groups on EGrO could be as high as 30 wt%, but the degree of oxidation did not proceed beyond the generation of carbonyl species. The controllable oxidation level of the EGrO makes it an attractive precursor for many applications, such as electronics and nanocomposites.
View less >
View more >Reproducible and in-depth studies of the electrochemical graphite intercalation and oxidation processes were carried out with the use of an electrochemical Tee-cell setup. The electrochemical method allowed simpler and greater controllability over the level of oxidation/functionalization, relative to the commonly employed chemical oxidation approach (e.g. the modified Hummers method). Extensive characterization was carried out to understand the properties of the electrochemically-derived graphite oxide (EGrO), and it was found that the abundance of each functionality was highly dependent on the electrochemical reaction time or the concentration of the electrolyte (perchloric acid) employed. Notably, the amount of oxygen functional groups on EGrO could be as high as 30 wt%, but the degree of oxidation did not proceed beyond the generation of carbonyl species. The controllable oxidation level of the EGrO makes it an attractive precursor for many applications, such as electronics and nanocomposites.
View less >
Journal Title
Carbon
Volume
112
Copyright Statement
© 2017 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Functional Materials
Physical Sciences
Chemical Sciences
Engineering